\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{strict omega-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_category_theory}{}\paragraph*{{Higher category theory}}\label{higher_category_theory} [[!include higher category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{as_simplicial_sets}{As simplicial sets}\dotfill \pageref*{as_simplicial_sets} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{strict $\omega$-category} is a [[globular set|globular]] [[∞-category]] in which all operations obey their respective laws strictly. This was the original notion of [[∞-category]], and the original meaning of the term [[∞-category]]. Even today, most authors who use that term still mean this notion. This means that \begin{enumerate}% \item all composition operations are strictly associative; \item all composition operations strictly commute with all others (strict [[exchange laws]]); \item all identity $k$-morphisms are strict identities under all compositions. \end{enumerate} \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} An \textbf{$\omega$-category} $C$ [[internalization|internal to]] $Sets$ is \begin{itemize}% \item a [[globular set]] \begin{displaymath} C := (\cdots C_3 \stackrel{\to}{\to} C_2 \stackrel{\to}{\to} C_1 \stackrel{\to}{\to} C_0 ) \end{displaymath} \item together with the structure of a [[category]] on all $( C_{k} \stackrel{\to}{\to} C_l )$ for all $k \gt l$; \item such that $( C_{k} \stackrel{\to}{\to} C_{l} \stackrel{\to}{\to} C_m )$ for all $k \gt l \gt m$; is a [[strict 2-category]]. \end{itemize} Similarly for an $\omega$-category [[internalization|internal to]] another ambient category $A$. The category $\omega Cat(A)$ of $\omega$-categories [[internalization|internal to]] $A$ has $\omega$-categories as its objects and morphism of the underlying globular objects respecting all the above extra structure as morphisms. \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item The last condition in the above definition says that all pairs of composition operations satisfy the [[exchange law]]. \item $\omega$-Categories can also be understood as the directed limit of the sequence of iterated [[enriched category theory|enrichments]] \begin{displaymath} (0 Cat = Set) \hookrightarrow (1 Cat = Set-Cat) \hookrightarrow (2 Cat = Cat-Cat) \hookrightarrow \left(3 Cat = (2Cat)-Cat = (Cat-Cat)-Cat\right) \hookrightarrow \cdots \,. \end{displaymath} \item The category of strict $\omega$-categories admits a [[closed monoidal category|biclosed monoidal structure]] called the [[Crans-Gray tensor product]]. \item The category of strict $\omega$-categories also admits a [[canonical model structure]]. \item Terminology on $\omega$-categories varies. We here follow section 2.2 of [[Sjoerd Crans]]: \href{http://home.tiscali.nl/secrans/papers/thpp.html}{Pasting presentations for $\omega$-categories}, where it says \begin{itemize}% \item \emph{[[Ross Street|Street]] allowed $\omega$-categories to have infinite dimensional cells. Steiner has the extra condition that every cell has to be finite dimensional, and called them $\infty$-categories, following [[Ronnie Brown|Brown]] and Higgins. I will use Steiner's approach here since that's the one that reflects the notion of higher dimensional homotopies closest, but I will nonethless call them $\omega$-categories, and I agree with [[Dominic Verity|Verity]]`s suggestion to call the other ones $\omega^+$-categories.} \end{itemize} \item [[Simpson's conjecture]], a statement about [[semi-strict infinity-category|semi-strictness]], states that every weak $\infty$-category should be equivalent to an $\infty$-category in which strictness conditions 1. and 2. hold, but not 3. \end{itemize} \hypertarget{as_simplicial_sets}{}\subsection*{{As simplicial sets}}\label{as_simplicial_sets} Under the [[oriental|∞-nerve]] \begin{displaymath} N : Str \omega Cat \to SSet \end{displaymath} strict $\omega$-categories yield simplicial sets that are called [[complicial sets]]. \begin{uprop} The categories of $\omega$-categories and complicial sets are [[equivalence of categories|equivalent]]. \end{uprop} This is sometimes called the \emph{Street-Roberts conjecture}. It was completely proven in \begin{itemize}% \item Dominic Verity, \emph{Complicial sets} (\href{http://arxiv.org/abs/math/0410412}{arXiv}) \end{itemize} which also presents the history of the conjecture. Based on this fact, there are attempts to weaken the condition on a [[simplicial set]] to be a [[complicial set]] so as to obtain a notion of [[simplicial weak ∞-category]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[strict ∞-groupoid]] \item [[parity complex]], [[oriental]] \item [[complicial set]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Strict $\omega$-categories have probably been independently invented by several people. According to \hyperlink{Street09}{Street 09, p. 10} the concept was first brought up by [[John Roberts]] 1977-1978, in an attempt to define [[non-abelian cohomology]] (of [[local nets of observables]] in [[algebraic quantum field theory]]). Possibly the earliest published definition is due to \begin{itemize}% \item [[Ronnie Brown]] and P.J. Higgins, \emph{The equivalence of $\infty$-groupoids and crossed complexes}, Cah. Top. G\'e{}om. Diff. 22 (1981) no. 4, 371-386 \href{http://www.numdam.org/item?id=CTGDC_1981__22_4_371_0}{web}. \end{itemize} which also contains the definitions of [[n-fold category]] and of what was later called [[globular set]]. There these strict, globular higher categories are called ``$\infty$-categories'' while ``$\omega$-groupoid'' is used to mean a cubical set with connections and compositions, each a groupoid, as in \begin{itemize}% \item R. Brown and P.J. Higgins, \emph{On the algebra of cubes}, J. Pure Appl. Algebra 21 (1981) 233-260. \end{itemize} Applications to homotopy theory were given in \begin{itemize}% \item R. Brown and P.J. Higgins, \emph{Colimit theorems for relative homotopy groups}, J. Pure Appl. Algebra 22 (1981) 11-41. \item R. Brown, \emph{Non-abelian cohomology and the homotopy classification of maps}, in Homotopie alg\'e{}brique et algebre locale, Conf. Marseille-Luminy 1982, ed. J.-M. Lemaire et J.-C. Thomas, Ast\'e{}risques 113-114 (1984), 167-172. \end{itemize} Related monoidal closed structures were developed in: \begin{itemize}% \item R. Brown and P.J. Higgins, \emph{Tensor products and homotopies for $\omega$-groupoids and crossed complexes}, J. Pure Appl. Alg. 47 (1987) 1-33. \end{itemize} Another 1980s reference is \begin{itemize}% \item [[Ross Street]], \emph{The algebra of oriented simplices}, J. Pure Appl. Algebra 49 (1987) 283-335; MR89a:18019 (\href{http://www.math.mq.edu.au/~street/aos.pdf}{pdf}), \end{itemize} in which strict $\omega$-categories are called ``$\omega$-categories.'' This paper was also the first to define [[orientals]]. A review of some of the theory in the context of some of the history is given in \begin{itemize}% \item [[Ross Street]], \emph{An Australian conspectus of higher categories}, chapter in \emph{Towards Higher Categories} Volume 152 of the series The IMA Volumes in Mathematics and its Applications pp 237-264 (\href{http://www.math.uchicago.edu/~may/IMA/Street.pdf}{pdf}) \end{itemize} and also in \begin{itemize}% \item [[Ross Street]], \emph{Categorical and combinatorial aspects of descent theory} (\href{http://arxiv.org/abs/math.CT/0303175}{arXiv}) \end{itemize} The theory of $\omega$-categories was further developed by Sjoerd Crans in parts 2 and 3 of his \href{http://home.tiscali.nl/secrans/papers/comb.html}{thesis} \begin{itemize}% \item [[Sjoerd Crans]], \emph{Pasting presentations for $\omega$-categories} (\href{http://home.tiscali.nl/secrans/papers/thpp.html}{link}) \item Sjoerd Crans, \emph{Pasting schemes for the monoidal biclosed structure on $\omega$-Cat} (\href{http://home.tiscali.nl/secrans/papers/thten.html}{link}) \end{itemize} See also the \begin{itemize}% \item \href{http://home.tiscali.nl/secrans/papers/thintro.ps.gz}{Introduction} \end{itemize} to his thesis, in particular section I.3 ``$\omega$-categories''. The relationship between strict $\omega$-categories and cubical $\omega$-categories was considered in \begin{itemize}% \item F.A. Al-Agl, R. Brown, R. Steiner \emph{Multiple categories: the equivalence of a globular and a cubical approach}, Adv. Math. 170 (2002), no. 1, 71--118 \end{itemize} where they prove that strict globular $\omega$-categories are equivalent to $\omega$-fold categories (aka ``cubical $\omega$-categories'') equipped with [[connections]]. This paper also develops the monoidal closed structures. \begin{itemize}% \item R. Steiner, \emph{Omega-categories and chain complexes}, Homology, Homotopy and Applications \textbf{6}(1), 2004, pp.175--200, \href{http://www.intlpress.com/HHA/v6/n1/a12/v6n1a12.pdf}{pdf} [[!redirects strict ∞-category]] [[!redirects strict ∞-categories]] [[!redirects strict omega-categories]] \end{itemize} \end{document}