\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{string 2-group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_lie_theory}{}\paragraph*{{Higher Lie theory}}\label{higher_lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{higher_spin_geometry}{}\paragraph*{{Higher spin geometry}}\label{higher_spin_geometry} [[!include higher spin geometry - contents]] \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{presentations}{Presentations}\dotfill \pageref*{presentations} \linebreak \noindent\hyperlink{ByLieIntegrationOfStringLie2Algebra}{By Lie integration of the string Lie 2-algebra}\dotfill \pageref*{ByLieIntegrationOfStringLie2Algebra} \linebreak \noindent\hyperlink{PresentationByStrictTwoGroups}{By strict Lie $2$-group}\dotfill \pageref*{PresentationByStrictTwoGroups} \linebreak \noindent\hyperlink{as_a_finitedimensional_weak_lie_2group}{As a finite-dimensional weak Lie 2-group}\dotfill \pageref*{as_a_finitedimensional_weak_lie_2group} \linebreak \noindent\hyperlink{as_an_automorphism_2group_of_fermionic_cft}{As an automorphism 2-group of fermionic CFT}\dotfill \pageref*{as_an_automorphism_2group_of_fermionic_cft} \linebreak \noindent\hyperlink{as_the_automorphisms_of_the_wesszuminowitten_gerbe_2connection}{As the automorphisms of the Wess-Zumino-Witten gerbe 2-connection}\dotfill \pageref*{as_the_automorphisms_of_the_wesszuminowitten_gerbe_2connection} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \emph{string 2-group} is a [[smooth ∞-groupoid|smooth 2-group]]-refinement of the [[topological group]] called the [[string group]]. It is the [[∞-group extension]] induced by the smooth/stacky version of the [[first fractional Pontryagin class]]/[[second Chern class]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A string 2-group extension $String(G)$ is defined for every [[simple Lie group|simple]] [[simply connected topological space|simply connected]] [[compact Lie group]] $G$, such as the [[spin group]] $G = Spin(n)$ or the [[special unitary group]] $G = SU(n)$ (for non-low $n$). Since [[string structures]] arise predominantly as higher analogs of [[spin structures]], the default choice is $G = Spin$ and in that case one usually just writes $String = String(Spin)$, for short. Recall first that the [[string group]] in [[Top]] is one step in the [[Whitehead tower]] of the [[orthogonal group]]. \begin{defn} \label{AbstractDefinitionDiscrete}\hypertarget{AbstractDefinitionDiscrete}{} For $n \in \mathbb{N}$ let $Spin(n)$ denote the [[spin group]], regarded as a [[topological group]]. Write $B Spin(n) \in$ [[Top]] for its [[classifying space]] and \begin{displaymath} \frac{1}{2}p_1 : B Spin(n) \to B^4 \mathbb{Z} \end{displaymath} for a representative of the [[characteristic class]] called the first fractional [[Pontryagin class]]. Its [[homotopy fiber]] in the [[(∞,1)-topos]] [[Top]] $\simeq$ [[∞Grpd]] is denoted $B String(n) := B O(n)\langle 7 \rangle$ \begin{displaymath} \itexarray{ B String(n) &\to& * \\ \downarrow && \downarrow \\ B Spin(n) &\stackrel{\frac{1}{2} p_1}{\to}& B^4 \mathbb{Z} } \,. \end{displaymath} The [[loop space]] \begin{displaymath} String(n) := \Omega B String(n) \end{displaymath} is the [[∞-group]]-object in [[Top]] called the \textbf{[[string group]]}. \end{defn} Write now \begin{displaymath} (\Pi \dashv Disc \dashv \Gamma \dashv coDisc) : Smooth\infty Grpd \stackrel{\overset{\Pi}{\to}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\to}}{\underset{coDisc}{\leftarrow}}}} \infty Grpd \simeq Top \end{displaymath} for the [[(∞,1)-topos]] [[Smooth∞Grpd]] of [[smooth ∞-groupoid]]s, regarded as a [[cohesive (∞,1)-topos]] over [[∞Grpd]]. \begin{prop} \label{SmoothFractionalPontryaginClass}\hypertarget{SmoothFractionalPontryaginClass}{} There is a lift through $\Pi$ of $\frac{1}{2} p_1$ to the \begin{displaymath} \frac{1}{2}\mathbf{p}_1 : \mathbf{B}Spin(n) \to \mathbf{B}^3 U(1) \end{displaymath} in [[Smooth∞Grpd]], where \begin{itemize}% \item $\mathbf{B}Spin$ is the [[delooping]] [[Lie groupoid]] of $Spin(n)$ regarded as a [[Lie group]] (see ); \item $\mathbf{B}^3 U(1)$ is the three-fold delooping of the [[circle group]], regarded as a [[Lie group]] (see ); \item $\frac{1}{2}\mathbf{p}_1$ is the image under [[Lie integration]] of the canonical [[Lie algebra cohomology|cocycle]] \begin{displaymath} \mu = \langle -,[-,-]\rangle : \mathfrak{so}(n) \to b^2 \mathbb{R} \,. \end{displaymath} on the [[orthogonal Lie algebra]]. \end{itemize} \end{prop} This is shown in (\hyperlink{FSS}{FSS}). \begin{defn} \label{AbstractDefinitionSmooth}\hypertarget{AbstractDefinitionSmooth}{} Write $\mathbf{B}String(n)$ for the [[homotopy fiber]] of the smooth first fractional Pontryagin class \begin{displaymath} \itexarray{ \mathbf{B}String &\to& * \\ \downarrow && \downarrow \\ \mathbf{B}Spin &\stackrel{\frac{1}{2}\mathbf{p}_1}{\to}& \mathbf{B}^3 U(1) } \end{displaymath} in [[Smooth∞Grpd]]. Its [[loop space object]] \begin{displaymath} String(n) := \Omega \mathbf{B}String(n) \end{displaymath} is the [[∞-Lie group|smooth ∞-group]] called [[generalized the|the]] \textbf{smooth string 2-group}. \end{defn} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} Write \begin{displaymath} \vert - \vert := \vert\Pi(-)\vert : Smooth \infty Grpd \stackrel{\Pi}{\to} \infty Grpd \stackrel{\vert - \vert}{\to} Top \end{displaymath} for the in [[Smooth∞Grpd]]. \begin{prop} \label{}\hypertarget{}{} The smooth string 2-group, def. \ref{AbstractDefinitionSmooth}, indeed maps under $\vert-\vert$ to the topological string group: \begin{displaymath} \vert \mathbf{B}String(n) \vert \simeq B String(n) \,. \end{displaymath} \end{prop} \begin{proof} Since $\mathbf{B}^3 U(1)$ is presented by a simplicial presheaf that is degreewise presented by a paracompact smooth manifold (a finite product of the [[circle group]] with itself), it follows from the general properties of $\Pi$ discussed at [[Smooth∞Grpd]] that $\Pi$ preserves the [[homotopy fiber]] of $\frac{1}{2}\mathbf{p}_1$. \end{proof} \hypertarget{presentations}{}\subsection*{{Presentations}}\label{presentations} Several explicit presentations of the string Lie 2-group are known. \hypertarget{ByLieIntegrationOfStringLie2Algebra}{}\subsubsection*{{By Lie integration of the string Lie 2-algebra}}\label{ByLieIntegrationOfStringLie2Algebra} We discuss a presentation of the smooth string 2-group by [[Lie integration]] of the skeletal version of the [[string Lie 2-algebra]]. Recall the identification of [[L-∞ algebra]]s $\mathfrak{g}$ with their dual [[Chevalley-Eilenberg algebra]]s $CE(\mathfrak{g})$. \begin{defn} \label{}\hypertarget{}{} Write \begin{displaymath} \mu := \langle - ,[-,-]\rangle : \mathfrak{so}(n) \to b^2 \mathbb{R} \end{displaymath} for the canonical degree-3 [[cocycle]] in the [[Lie algebra cohomology]] of the [[special orthogonal group]], normalized such that the 3-form \begin{displaymath} \Omega^\bullet(Spin(n)) \hookleftarrow CE(\mathfrak{so}(n)) \stackrel{\mu}{\leftarrow} CE(b^2 \mathbb{R}) \end{displaymath} represents the image in [[de Rham cohomology]] of a generators of the [[integral cohomology]] group $H^3(G,\mathbb{Z}) \simeq \mathbb{Z}$. Define the \textbf{[[string Lie 2-algebra]]} \begin{displaymath} \mathfrak{string}(n) := \mathfrak{so}(n)_\mu \end{displaymath} to be given by the [[Chevalley-Eilenberg algebra]] \begin{displaymath} CE(\mathfrak{string}(n)) := \wedge^\bullet ( \mathfrak{so}(n)^* \oplus \langle b\rangle , d_{\mathfrak{string}}) \end{displaymath} which is that of $\mathfrak{so}(n)$ with a single generator $b$ in degree 3 adjoined and the differential given by \begin{displaymath} d_{\mathfrak{string}}|_{\mathfrak{so}(n)^*} = d_{\mathfrak{so}(n)}; \end{displaymath} \begin{displaymath} d_{\mathfrak{string}} : b \mapsto \mu \,. \end{displaymath} \end{defn} \begin{prop} \label{HomotopyFiberOfLInftyAlgebraCocycle}\hypertarget{HomotopyFiberOfLInftyAlgebraCocycle}{} We have a [[pullback]] square in $L_\infty Alg$ \begin{displaymath} \itexarray{ \mathfrak{string}(n) &\to& e b \mathbb{R} \\ \downarrow && \downarrow \\ \mathfrak{so}(n) &\stackrel{\mu}{\to}& b^2 \mathbb{R} } \,. \end{displaymath} \end{prop} See [[string Lie 2-algebra]] for more discussion. \begin{prop} \label{}\hypertarget{}{} The [[Lie integration]] of $\mathfrak{string}(n)$ yields a presentation of the smooth String 2-group, def. \ref{AbstractDefinitionSmooth} \begin{displaymath} \mathbf{cosk}_3 \exp(\mathfrak{string}(n)) \simeq \mathbf{B} String(n) \,. \end{displaymath} \end{prop} This is essentially the model considered in (\hyperlink{Henriques}{Henriques}), discussed here in the context of [[Smooth∞Grpd]] as described in (\hyperlink{FSS}{FSS}). \begin{proof} We observe the image under [[Lie integration]] of the $L_\infty$-algebra pullback diagram from prop. \ref{HomotopyFiberOfLInftyAlgebraCocycle} is a pullback diagram in $[CartSp_{smooth}^{op}, sSet]_{proj}$ that presents the defining [[homotopy fiber]]. Before applying the [[coskeleton]] operation we have immediately \begin{displaymath} \exp(-) \; :\; \left( \itexarray{ \mathfrak{string}(n) &\to& e b \mathbb{R} \\ \downarrow && \downarrow \\ \mathfrak{so}(n) &\stackrel{\mu}{\to}& b^2 \mathbb{R} } \right) \;\mapsto \; \left( \itexarray{ \exp(\mathfrak{string}(n)) &\to& \exp(e b \mathbb{R}) \\ \downarrow && \downarrow \\ \exp(\mathfrak{so}(n)) &\stackrel{\mu}{\to}& \exp(b^2 \mathbb{R}) } \right) \end{displaymath} such that on the right we still have a [[pullback]] diagram. We discuss the descent o this pullback diagram along the projection $\exp(\mathfrak{so}(n)) \to \mathbf{cosk}_3 \exp(\mathfrak{so}(n))$. Notice from [[Lie integration]] the weak equivalence \begin{displaymath} \int_{\Delta^\bullet} : \exp(b^n \mathbb{R}) \simeq \mathbf{B}^{n+1}\mathbb{R}_c \,. \end{displaymath} Let $I$ be the set of maps $\partial \Delta[4] \to \exp(b^2 \mathbb{R})$ that fit into a diagram \begin{displaymath} \itexarray{ \partial \Delta[4] &\to& \exp(b^2 \mathbb{R}) \\ \downarrow && \downarrow^{\mathrlap{\int_{\Delta^\bullet}}} \\ && \mathbf{B}^3 \mathbb{R}_c \\ \downarrow && \downarrow \\ \Delta[4] &\to& \mathbf{B}^3 (\mathbb{Z} \to \mathbb{R})_c } \end{displaymath} (closed 3-forms on 3-balls whose integral is an integer). Write \begin{displaymath} \exp(b^2 \mathbb{R}/\mathbb{Z}) := \mathbf{cosk}_3 \left( (I \times \Delta[4])\coprod_{I \times \partial \Delta[4]} \mathbf{cosk_3} \exp(b^2 \mathbb{R}) \right) \end{displaymath} for the result of filling all these by 4-cells. Similarly define $\exp(e b \mathbb{R}/\mathbb{Z})$. Then applying the [[coskeleton]] functor to the above pullback diagram and using the projection (\hyperlink{FSS}{FSS}) \begin{displaymath} \itexarray{ \exp(\mathfrak{so}(n)) &\stackrel{\exp(\mu)}{\to}& \exp(b^2 \mathbb{R}) \\ \downarrow && \downarrow \\ \mathbf{cosk}_3\exp(\mathfrak{so}(n)) &\stackrel{\frac{1}{2}\mathbf{p}_1}{\to}& \exp(b^2 \mathbb{R}/\mathbb{Z}) } \end{displaymath} we get the diagram \begin{displaymath} \itexarray{ \mathbf{cosk}_3 (\mathfrak{string}(n)) &\to& \exp(e b \mathbb{R}/\mathbb{Z}) \\ \downarrow && \downarrow \\ \mathbf{cosk}_3 \exp(\mathfrak{so}) &\stackrel{\frac{1}{2}\mathbf{p}_1}{\to}& \exp(b^2 \mathbb{R}/\mathbb{Z}) } \,. \end{displaymath} This is again a pullback diagram of a fibration resolution of the point inclusion, hence presents the homotopy fiber in question. \end{proof} \hypertarget{PresentationByStrictTwoGroups}{}\subsubsection*{{By strict Lie $2$-group}}\label{PresentationByStrictTwoGroups} A realization of the string 2-group as a [[strict 2-group]] [[internalization|internal]] to [[diffeological space]]s was given in (\hyperlink{BCSS}{BCSS}). This is one of three different (there should be more), weakly equivalent such [[strict 2-group]] [[internalization|internal]] to [[diffeological space]] models that are discussed in the (to date unpublished) \begin{itemize}% \item \href{http://www.math.uni-hamburg.de/home/schreiber/nactwist.pdf#page=91}{nactwist, section 5.2.3} \end{itemize} (This particular section, and its results, are joint work of [[Urs Schreiber]] and [[Danny Stevenson]]). We have the following pattern of routes through [[Lie integration]]: \begin{displaymath} \itexarray{ StrLie \omega Grpd &&&& StrLie \omega Grpd &\stackrel{\simeq}{\leftarrow}& LieCrsdCmplx \\ \uparrow^{\Pi_n S CE} &&&& \uparrow && \uparrow^{\exp(-)} \\ L_\infty Algebras && \leftarrow&& Str L_\infty Algebras &\to& DiffCrsdCmplx } \end{displaymath} Here $StrLie \omega Grpd$ is [[strict omega-groupoid]]s internal to [[diffeological space]]s, $LieCrsCmplx$ is accordingly smooth [[crossed complex]]es , $L_\infty Algebra$ is all [[L-infinity algebra]]s and $Str L_\infty Algebra$ is \emph{strict} $L_\infty$-algebras. The vertical morphism on the right is term-wise ordinary [[Lie integration]]. The other vertical morphisms take an [[L-infinity algebra]], form the [[sheaf]] on [[Diff]] of flat [[schreiber:∞-Lie algebroid valued differential forms|∞-Lie algebroid differential form]]s, and then take [[path n-groupoid]] $\Pi_n(-)$ of that. For the String-case this yields \begin{displaymath} \itexarray{ \Pi_2(\Omega^\bullet_{fl}(-,\mathfrak{so}_{\mu_3})) &\stackrel{\simeq}{\mapsto}& \mathbf{B} String_{Mick} &\stackrel{\simeq}{\mapsto}& \mathbf{B} String_{BCSS} &\leftarrow|& (\hat \Omega Spin \to P Spin) \\ \uparrow &&&\nearrow& \uparrow && \uparrow \\ \mathfrak{so}_{\mu_3} &&\stackrel{\simeq}{\mapsto}&& \mathfrak{string} &\mapsto& (\hat \Omega \mathfrak{so} \to P \mathfrak{so}) } \,, \end{displaymath} where \begin{itemize}% \item $\mathfrak{so}_{\mu_3}$ denotes the weak, skeletal [[String Lie 2-algebra]] \item $\mathfrak{string}$ its equivalent strict version given by BCSS \item the diagonal morphism is the construction in BCSS. \item the strict 2-groupoid $\Pi_2(\Omega^\bullet_{fl}(-,\mathfrak{g}_{\mu_3}))$ has, notice, as morphism smooth paths in $Spin(n)$ that are composed by concatenation \item the 2-groupoid $\mathbf{B}String_{Mick}$ is a version of the String Lie 2-group that manifestly uses the [[Mickelsson cocycle]] (morphism are paths in $Spin(n)$ that are composed using the group product) \item the 2-groupoid $\mathbf{B}String_{BCSS}$ is the version given in BCSS (morhisms again are paths in $Spin(n)$ that are composed using the group product). \end{itemize} \hypertarget{as_a_finitedimensional_weak_lie_2group}{}\subsubsection*{{As a finite-dimensional weak Lie 2-group}}\label{as_a_finitedimensional_weak_lie_2group} (\hyperlink{Schommer-Pries}{Schommer-Pries}) \hypertarget{as_an_automorphism_2group_of_fermionic_cft}{}\subsubsection*{{As an automorphism 2-group of fermionic CFT}}\label{as_an_automorphism_2group_of_fermionic_cft} The string 2-group also appears as a certain [[automorphism 2-group]] inside the [[3-category of fermionic conformal nets]] (\hyperlink{DouglasHenriques}{Douglas-Henriques}) \hypertarget{as_the_automorphisms_of_the_wesszuminowitten_gerbe_2connection}{}\subsubsection*{{As the automorphisms of the Wess-Zumino-Witten gerbe 2-connection}}\label{as_the_automorphisms_of_the_wesszuminowitten_gerbe_2connection} For $G$ a compact simply connected simple [[Lie group]], there is the ``[[WZW gerbe]]'', hence the [[circle n-bundle with connection|circle 2-bundle with connection]] on $G$ whose [[curvature]] 3-form is the [[left invariant differential form|left invariant]] extension $\langle \theta \wedge [\theta \wedge \theta]\rangle$ of the canonical Lie algebra 3-cocycle to the group \begin{displaymath} \mathcal{L}_{WZW} \;\colon\; G \longrightarrow \mathbf{B}^2 \,. \end{displaymath} \begin{prop} \label{}\hypertarget{}{} The string 2-group is the [[smooth infinity-group|smooth 2-group]] of [[automorphism infinity-group|automorphism]] of $\mathcal{L}_{WZW}$ which cover the left [[action]] of $G$ on itself (hence the ``[[Heisenberg 2-group]]'' of $\mathcal{L}_{WZW}$ regarded as a [[prequantum 2-bundle]]) \begin{displaymath} \mathbf{Aut}(\mathcal{L}_{WZW}) \simeq String(G) \,, \end{displaymath} \end{prop} This is due to (\hyperlink{FiorenzaRogersSchreiber13}{Fiorenza-Rogers-Schreiber 13, section 2.6.1}). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Platonic 2-group]] \end{itemize} [[fivebrane 6-group]] $\to$ \textbf{string 2-group} $\to$ [[spin group]] $\to$ [[special orthogonal group]] $\to$ [[orthogonal group]] $\hookrightarrow$ [[general linear group]] \begin{itemize}% \item [[spin group]], [[spin structure]], [[twisted spin structure]] \item [[spin{\tt \symbol{94}}c]], [[spin{\tt \symbol{94}}c structure]], [[twisted spin{\tt \symbol{94}}c structure]] \item [[string group]], [[string 2-group]], [[string structure]], [[twisted string structure]] \item [[T-duality 2-group]] \item [[string{\tt \symbol{94}}c 2-group]] \item [[fivebrane group]], [[fivebrane 6-group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A [[crossed module]] presentation of a topological realization of the string 2-group is implicit in \begin{itemize}% \item [[Stephan Stolz]], [[Peter Teichner]], \emph{What is an elliptic object?} (\href{http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.146.5463&rep=rep1&type=pdf}{pdf}) \end{itemize} A realization of the string 2-group in [[∞-groupoid]]s [[internalization|internal to]] [[Banach space]]s by [[Lie integration]] of the skeletal version of the [[string Lie 2-algebra]] is in \begin{itemize}% \item [[Andre Henriques]], \emph{Integrating $L_\infty$-algebras} (\href{http://arxiv.org/abs/math/0603563}{arXiv:math/0603563}) \end{itemize} A realization of the string 2-group in [[strict 2-group]]s internal to [[Frechet manifold]]s by [[Lie integration]] of a [[strict Lie 2-algebra]] incarnation of the [[string Lie 2-algebra]] in in \begin{itemize}% \item [[John Baez]], [[Alissa Crans]], [[Urs Schreiber]], [[Danny Stevenson]], \emph{From loop groups to 2-groups}, Homology Homotopy Appl. Volume 9, Number 2 (2007), 101-135. (\href{https://arxiv.org/abs/math/0504123}{arXiv:math/0504123}) \end{itemize} A realization of the string 2-group as a [[2-group]] in finite-dimensional [[smooth manifold]]s in in \begin{itemize}% \item [[Chris Schommer-Pries]], \emph{Central Extensions of Smooth 2-Groups and a Finite-Dimensional String 2-Group} (\href{http://arxiv.org/abs/0911.2483}{arXiv:0911.2483}) \end{itemize} A discussion as an [[∞-group]] object in [[Smooth∞Grpd]] and the realization of the smooth first fractional Pontryagin class is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Urs Schreiber]], [[Jim Stasheff]], \emph{Cech cocycles for differential characteristic classes} () \end{itemize} and in section 4.1 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} \end{itemize} A 2-group model which has a smoothening of the \emph{topological} [[string group]] in lowest degree has been given in \begin{itemize}% \item [[Thomas Nikolaus]], [[Christoph Sachse]], [[Christoph Wockel]], \emph{A Smooth Model for the String Group} (\href{http://arxiv.org/abs/1104.4288}{arXiv:1104.4288}) \end{itemize} A construction explicitly in terms of the ``basic'' [[bundle gerbe]] on $G$ is discussed in \begin{itemize}% \item [[Konrad Waldorf]], \emph{A Construction of String 2-Group Models using a Transgression-Regression Technique} (\href{http://arxiv.org/abs/1201.5052}{arXiv:1201.5052}) \end{itemize} Via fermionic nets/[[2-Clifford algebra]]: \begin{itemize}% \item [[Chris Douglas]], [[André Henriques]], \emph{Geometric string structures} (\href{http://www.staff.science.uu.nl/~henri105/PDF/TringWP.pdf}{pdf}) \end{itemize} The realization of the string 2-group as the [[Heisenberg 2-group]] of the [[WZW gerbe]] is due to \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantum theory]]}, 2013 (\href{http://arxiv.org/abs/1304.0236}{arXiv:1304.0236}) \end{itemize} A model of the string 2-group using the smooth [[free loop space]] (instead of the based [[loop space]]) is dicussed in \begin{itemize}% \item [[Michael Murray]], [[David Roberts]], [[Christoph Wockel]], \emph{Quasi-periodic paths and a string 2-group model from the free loop group} (\href{https://arxiv.org/abs/1702.01514}{arXiv:1702.01514}) \end{itemize} Discussion in the context of [[matrix factorizations]] and [[equivariant K-theory]] is in \begin{itemize}% \item [[Daniel S. Freed]], [[Constantin Teleman]], \emph{Dirac families for loop groups as matrix factorizations}, \href{http://arxiv.org/abs/1409.6051}{arxiv/1409.6051} \end{itemize} [[!redirects String 2-group]] [[!redirects String Lie 2-group]] [[!redirects string Lie 2-group]] [[!redirects smooth string 2-group]] \end{document}