\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{string group} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{definition_by_cokilling_of_}{Definition by co-killing of $\pi_3$}\dotfill \pageref*{definition_by_cokilling_of_} \linebreak \noindent\hyperlink{models}{Models}\dotfill \pageref*{models} \linebreak \noindent\hyperlink{as_a_topological_group}{As a topological group}\dotfill \pageref*{as_a_topological_group} \linebreak \noindent\hyperlink{as_a_smooth_2group}{As a smooth 2-group}\dotfill \pageref*{as_a_smooth_2group} \linebreak \noindent\hyperlink{role_in_string_theory}{Role in string theory}\dotfill \pageref*{role_in_string_theory} \linebreak \noindent\hyperlink{generalization_to_other_groups}{Generalization to other groups}\dotfill \pageref*{generalization_to_other_groups} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} The \textbf{string group} $String(n)$ is defined to be, as a [[topological group]], the [[Whitehead tower|3-connected cover]] of the [[Spin group]] $Spin(n)$, for any $n \in \mathbb{N}$. Notice that for $n\ge3$, $Spin(n)$ itself is the [[Whitehead tower|simply connected cover]] of the [[special orthogonal group]] $SO(n)$, which in turn is the connected component (of the identity) of the [[orthogonal group]] $O(n)$. Hence $String(n)$ is one element in the [[Whitehead tower]] of $\mathrm{O}(n)$: \begin{displaymath} \cdots \to Fivebrane(n) \to String(n) \to Spin(n) \to SO(n) \to \mathrm{O}(n) \,. \end{displaymath} The next higher connected group is called the [[Fivebrane group]]. The [[homotopy group]]s of $O(n)$ are for $k \in \mathbb{N}$ and for sufficiently large $n$ \begin{displaymath} \itexarray{ \pi_{8k+0}(O) & = \mathbb{Z}_2 \\ \pi_{8k+1}(O) & = \mathbb{Z}_2 \\ \pi_{8k+2}(O) & = 0 \\ \pi_{8k+3}(O) & = \mathbb{Z} \\ \pi_{8k+4}(O) & = 0 \\ \pi_{8k+5}(O) & = 0 \\ \pi_{8k+6}(O) & = 0 \\ \pi_{8k+7}(O) & = \mathbb{Z} } \,. \end{displaymath} By [[Whitehead tower|co-killing]] these groups step by step one gets \begin{displaymath} \itexarray{ cokill this &&&& to get \\ \\ \pi_{0}(O) & = \mathbb{Z}_2 &&& SO \\ \pi_{1}(O) & = \mathbb{Z}_2 &&& Spin \\ \pi_{2}(O) & = 0 \\ \pi_{3}(O) & = \mathbb{Z} &&& String \\ \pi_{4}(O) & = 0 \\ \pi_{5}(O) & = 0 \\ \pi_{6}(O) & = 0 \\ \pi_{7}(O) & = \mathbb{Z} &&& Fivebrane } \,. \end{displaymath} \hypertarget{definition_by_cokilling_of_}{}\subsection*{{Definition by co-killing of $\pi_3$}}\label{definition_by_cokilling_of_} More in detail this means the following. First notice that since by construction $\pi_i(\mathcal{B}Spin(n)) = 0$ for $0 \leq i \leq 3$, by the [[Hurewicz theorem]] we have for the degree 4 [[integral cohomology]] group of the [[classifying space]] $B Spin(n)$ that \begin{displaymath} H^4(B Spin(n)) \simeq \pi_4(B Spin(n)) \simeq \mathbb{Z} \,. \end{displaymath} The generator of this group is called the \textbf{fractional first Pontryagin class} and denoted \begin{displaymath} \frac{1}{2}p_1 : B Spin(n) \to B^4 \mathbb{Z} \simeq K(\mathbb{Z},4) \end{displaymath} because the ordinary first [[Pontryagin class]] $p_1 : \mathcal{B} SO(n) \to K(\mathbb{Z},4)$ fits into a diagram \begin{displaymath} \itexarray{ B Spin(n) &\stackrel{\frac{1}{2} p_1}{\to}& B^4 \mathbb{Z} \\ \downarrow && \downarrow^{\cdot 2} \\ B SO(n) &\stackrel{p_1}{\to}& B^4 \mathbb{Z} } \,, \end{displaymath} where the right vertical morphism comes from multiplication by 2 in $\mathbb{Z}$. This says that \emph{after being pulled back} to $\mathcal{B} Spin(n)$ the first [[Pontryagin class]] is 2 times the generator of the degree 4 [[integral cohomology]] group of $\mathcal{B}Spin(n)$ and hence that generator is called one half of $p_1$, denoted $\frac{1}{2}p_1$ (by slight abuse of notation). The [[delooping]] of the String-group as a [[topological group]] is the [[homotopy fiber]] of this fractional Pontyagin class, i.e. the [[homotopy pullback]] \begin{displaymath} \itexarray{ B String(n) &\to& {*} \\ \downarrow && \downarrow \\ B Spin(n) &\to& \mathcal{B}^4 \mathbb{Z} } \end{displaymath} in [[Top]]. In other words: $B String(n)$ is the $U(1)$- 2-[[gerbe]] or $B^2 U(1)$ [[principal ∞-bundle]] on $B Spin(n)$ whose class is $\frac{1}{2}p_1 \in H^4(B Spin(n), 4)$. \hypertarget{models}{}\subsection*{{Models}}\label{models} \hypertarget{as_a_topological_group}{}\subsubsection*{{As a topological group}}\label{as_a_topological_group} There is a model due to Stolz and Teichner in `What is an elliptic object?'\ldots{} \hypertarget{as_a_smooth_2group}{}\subsubsection*{{As a smooth 2-group}}\label{as_a_smooth_2group} While $Spin(n)$ is not just a [[topological group]] but a (finite dimensional) [[Lie group]], $String(n)$ cannot have the structure of a finite dimensional [[Lie group]], due to the fact that the third [[homotopy group]] is nontrivial for every (finite dimensional) Lie group, while for $\pi_3(String(n)) = 0$ by the very definition of $String(n)$. However, one can define an \emph{infinite-dimensional} Lie group with the correct properties to be a model of $String(n)$ (\hyperlink{NikolausSachseWockel}{Nikolaus-Sachse-Wockel 2013}). There are also smooth models of $String(n)$ in the form of [[2-group]]s. See [[string 2-group]]. \hypertarget{role_in_string_theory}{}\subsection*{{Role in string theory}}\label{role_in_string_theory} The reason for the name is that in [[string theory]], for (blah) to be well-defined, it is necessary for the structure group of (blah) to lift to (blah). See [[String structure]]. If one considers passing to the (free) [[loop space]] of spacetime and then doing [[quantum mechanics]], the requirement of the previous paragraph is that the structure group lifts to \ldots{} (cite Killingback, Mickelsson, Schreiber, Witten,\ldots{}) \hypertarget{generalization_to_other_groups}{}\subsection*{{Generalization to other groups}}\label{generalization_to_other_groups} One may consider the universal 3-connected cover of any general [[compact space|compact]], [[simple Lie group|simple]] and [[simply connected space|simply connected]] [[Lie group]] $G$, in complete analogy to the case $G = Spin(n)$. Accordingly one speaks of string-groups $String_G$. Of these the case $G =$ [[E8]] is the other one relevant in [[string theory]]: see [[Green-Schwarz mechanism]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} $\cdots \to$ [[Fivebrane group]] $\to$ \textbf{string group} $\to$ [[spin group]] $\to$ [[special orthogonal group]] $\to$ [[orthogonal group]]. [[!include image of J -- table]] \begin{itemize}% \item [[string orientation of tmf]] \end{itemize} [[!include table of orthogonal groups and related]] \hypertarget{references}{}\subsection*{{References}}\label{references} Originally the String-group was just known by its generic name: with $\mathcal{B} O \langle 8 \rangle$ being the topologist's notation for the [[n-connected|7-connected]] cover of the [[delooping]]/[[classifying space]] $\mathcal{B}O$ of the group $O$. When it was realized that lifts of the structure maps $X \to \mathcal{B}O$ of the [[tangent bundle]] of a [[manifold]] $X$ through the projection $\mathcal{B}O\langle 8 \rangle \to \mathcal{B}O$ -- now called a [[String structure]] -- play the same role in [[string theory]] as a [[Spin structure]] does in ordinary [[quantum mechanics]], the term \emph{String group} for $\Omega (\mathcal{B}O\langle 8 \rangle)$ was suggested. Following some inquiries by [[Jim Stasheff]] and confirmed in private email by [[Haynes Miller]] it seems that the first one to propose the term \emph{$String$ group} for the group known to topologists as $\Omega (\mathcal{B}O\langle 8\rangle)$ was [[Haynes Miller]]. A model of the string group by [[local nets]] of fermions is discussed in \begin{itemize}% \item [[Stefan Stolz]], [[Peter Teichner]], \emph{The spinor bundle on loop space} (2005) (\href{http://web.me.com/teichner/Math/Surveys_files/MPI.pdf}{pdf}) \end{itemize} Many more models exist by now in terms of [[geometric realization]] of a model for the [[string 2-group]]. See there for more references. A good review is in the introduction of \begin{itemize}% \item [[Chris Schommer-Pries]], \emph{Central Extensions of Smooth 2-Groups and a Finite-Dimensional String 2-Group} (\href{http://arxiv.org/abs/0911.2483}{arXiv:0911.2483}) \end{itemize} In \begin{itemize}% \item [[Thomas Nikolaus]], [[Christoph Sachse]], [[Christoph Wockel]], \emph{A Smooth Model for the String Group}, Int. Math. Res. Not. IMRN 16 (2013) 3678-3721, doi:\href{https://dx.doi.org/10.1093/imrn/rns154}{10.1093/imrn/rns154}, (\href{http://arxiv.org/abs/1104.4288}{arXiv:1104.4288}) \end{itemize} it is shown that the topological string group does admit a [[Frechet manifold]] [[Lie group]] structure. For relation to [[conformal nets]] see \begin{itemize}% \item Bas Janssens, \emph{Notes on Defects \& String Group} (\href{http://www.bjadres.nl/WorkInProgress/Defect&String.pdf}{pdf}) \end{itemize} [[!redirects String group]] \end{document}