\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{string topology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{the_string_operations}{The string operations}\dotfill \pageref*{the_string_operations} \linebreak \noindent\hyperlink{the_string_product}{The string product}\dotfill \pageref*{the_string_product} \linebreak \noindent\hyperlink{the_bvoperator}{The BV-operator}\dotfill \pageref*{the_bvoperator} \linebreak \noindent\hyperlink{InTermsOfTQFTs}{String operations as operators in a topological quantum field theory}\dotfill \pageref*{InTermsOfTQFTs} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In \textbf{string topology} one studies the [[BV-algebra]]-structure on the [[ordinary homology]] of the [[free loop space]] $X^{S^1}$ of an [[oriented]] [[manifold]] $X$, or more generally the [[framed little 2-disk operad|framed little 2-disk algebra]]-structure on the singular [[chain complex]]. This is a special case of the general algebraic structure on higher order [[Hochschild cohomology]], as discussed there. The study of \emph{string topology} was initated by [[Moira Chas]] and [[Dennis Sullivan]]. \hypertarget{the_string_operations}{}\subsection*{{The string operations}}\label{the_string_operations} Let $X$ be a [[smooth manifold]], write $L X$ for its [[free loop space]] (for $X$ regarded as a [[topological space]]) and $H_\bullet(L X)$ for the [[ordinary homology]] of this space (with coefficients in the [[integer]]s $\mathbb{Z}$). \hypertarget{the_string_product}{}\subsubsection*{{The string product}}\label{the_string_product} \begin{defn} \label{}\hypertarget{}{} The \textbf{string product} is a morphism of [[abelian group]]s \begin{displaymath} (-)\cdot(-) : H_\bullet(L X) \otimes H_\bullet(L X) \to H_{\bullet - dim X}(L X) \,, \end{displaymath} where $dim X$ is the [[dimension]] of $X$, defined as follows: Write $ev_* : L X \to X$ for the [[evaluation map]] at the basepoint of the loops. For $[\alpha] \in H_i(L X)$ and $[\beta] \in H_j(L X)$ we can find representatives $\alpha$ and $\beta$ such that $ev(\alpha)$ and $ev(\beta)$ intersect [[transversal map|transversally]]. There is then an $((i+j)-dim X)$-chain $\alpha \cdot \beta$ such that $ev(\alpha \cdot \beta)$ is the chain given by that intersection: above $x \in ev(\alpha \cdot \beta)$ this is the loop obtained by concatenating $\alpha_x$ and $\beta_x$ at their common basepoint. The \emph{string product} is then defined using such representatives by \begin{displaymath} [\alpha] \cdot [\beta] := [\alpha \cdot \beta] \,. \end{displaymath} \end{defn} \begin{theorem} \label{}\hypertarget{}{} The string product is [[associativity|associative]] and graded-commutative. \end{theorem} This is due to (\hyperlink{ChasSullivan}{ChasSullivan}). There is is a more elegant way to capture this, due to (\hyperlink{CohenJones}{CohenJones}): Let \begin{displaymath} S^1 \coprod S^1 \to 8 \leftarrow S^1 \end{displaymath} be the [[cospan]] that exhibts the inner and the outer circle of the figure ``8'' topological space. By forming [[hom space]]s this induces the [[span]] \begin{displaymath} \itexarray{ && X^8 \\ & {}^{\mathllap{in}}\swarrow && \searrow^{\mathrlap{out}} \\ L X \times L X &&&& L X } \,. \end{displaymath} Write $in^!$ for the ``pullback'' in [[ordinary homology]] along $in$ (the dual [[fiber integration]]) and $out_*$ for the ordinary pushforward. \begin{theorem} \label{}\hypertarget{}{} The string product is the pull-push operation \begin{displaymath} out_* \circ in^! : H_\bullet(L X \times L X) \simeq H_\bullet(L X) \otimes H_\bullet(L X) \to H_{\bullet - dim X}(L X) \,. \end{displaymath} \end{theorem} This is due to (\hyperlink{CohenJones}{CohenJones}). \hypertarget{the_bvoperator}{}\subsubsection*{{The BV-operator}}\label{the_bvoperator} \begin{defn} \label{}\hypertarget{}{} Define a morphism of [[abelian group]]s \begin{displaymath} \Delta : H_\bullet(L X) \to H_{\bullet + 1}(L X) \end{displaymath} as follows. Consider first the rotation map \begin{displaymath} \rho : S^1 \times L X \to L X \end{displaymath} that sends $(\theta, \gamma) \mapsto (t \mapsto \gamma(\theta + t))$. Then take \begin{displaymath} \Delta : a \mapsto \rho_* ([S^1] \times a) \,, \end{displaymath} where $[S^1] \in H_1(S^1)$ is the [[fundamental class]] of the [[circle]]. \end{defn} This is called the \textbf{BV-operator} for string topology. \begin{prop} \label{}\hypertarget{}{} The [[Goldman bracket]] on $H_0(L X)$ is equivalent to the string product applied to the image of the BV-operator \begin{displaymath} \{[\gamma_1], [\gamma_2]\} = \Delta[\Gamma_1] \cdot \Delta[\Gamma_2] \,. \end{displaymath} \end{prop} This is due to (\hyperlink{ChasSullivan}{ChasSullivan}). \hypertarget{InTermsOfTQFTs}{}\subsection*{{String operations as operators in a topological quantum field theory}}\label{InTermsOfTQFTs} The structures studied in the \emph{string topology} of a [[smooth manifold]] $X$ may be understood as being essentially the data of a 2-dimensional [[topological field theory]] [[sigma model]] with [[target space]] $X$, or rather its linearization to an [[HQFT]] (with due care on some technical subtleties). The idea is that the [[configuration space]] of a closed or open [[string]]-[[sigma-model]] propagating on $X$ is the [[loop space]] or path space of $X$, respectively. The space of [[state]]s of the string is some space of sections over this configuration space, to which the (co)homology $H_\bullet(L X)$ is an approximation. The string topology operations are then the [[cobordism]]-representation with [[coefficients]] in the [[category of chain complexes]] \begin{displaymath} H_\bullet(Bord_2) \to Ch_\bullet \end{displaymath} given by the [[FQFT]] corresponding to the $\sigma$-modelon these state spaces, acting on these state spaces. $\,,$ Let $X$ be an [[orientation|oriented]] [[compact space|compact]] [[manifold]] of dimension $d$. For $\mathcal{B} = \{A, B , \cdots\}$ a collection of oriented compact submanifolds write $P_X(A,B)$ for the [[path space]] of paths in $X$ that start in $A \subset X$ and end in $B \subset X$. \begin{theorem} \label{}\hypertarget{}{} The tuple $(H_\bullet(L M, \mathbb{Q}), \{H_\bullet(P_X(A,B), \mathbb{Q})\}_{A,B \in \mathcal{B}})$ carries the structure of a $d$-dimensional [[HCFT]] with \emph{positive boundary} and set of [[branes]] $\mathcal{B}$, such that the correlators in the closed sector are the standard string topology operation. \end{theorem} For [[closed strings]] this is discussed in (\hyperlink{CohenGodin03}{Cohen-Godin 03}, \hyperlink{Tamanoi07}{Tamanoi 07}). For [[open strings]] on a single [[brane]] $\mathcal{B} = \{*\}$ this was shown in (\hyperlink{Godin}{Godin 07}), where the general statement for arbitrary branes is conjectured. A detailed proof of this general statement is in (\hyperlink{Kupers}{Kupers 11}). \begin{remark} \label{}\hypertarget{}{} These constructions work by regarding the [[mapping spaces]] from 2-dimensional [[cobordisms]] with maps to the base space as [[correspondences]] and then applying pull-push (pullback followed by [[push-forward in generalized cohomology|push-forward in cohomology]]/[[Umkehr maps]]) to these. Hence these quantum field theory realizations of string topology may be thought of as arising from a [[quantization]] process of the form \emph{[[path integral as a pull-push transform]]/[[motivic quantization]]}. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Goldman bracket]] \item [[path integral as a pull-push transform]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original references include the following: \begin{itemize}% \item [[Moira Chas]], [[Dennis Sullivan]], \emph{String topology}, Ann. Math. \href{http://arxiv.org/abs/math/9911159}{math.GT/9911159} \end{itemize} \begin{itemize}% \item [[Ralph Cohen]], [[Alexander Voronov]], \emph{Notes on string topology}, \href{http://arxiv.org/abs/math/0503625}{math.GT/05036259}, 95 pp. published as a part of R. Cohen, [[Kathryn Hess|K. Hess]], A. Voronov, \emph{String topology and cyclic homology}, CRM Barcelona courseware, Springer, \href{http://www.springer.com/birkhauser/mathematics/book/978-3-7643-2182-6}{description}, \href{http://dx.doi.org/10.1007/3-7643-7388-1}{doi}, \href{http://gen.lib.rus.ec/get?md5=adde9464705ede0fea6b435edb58fbe7}{pdf} \item [[Dennis Sullivan]], \emph{Open and closed string field theory interpreted in classical algebraic topology}, Topology, geometry, and quantum field theory, 344--357. London Math. Soc. Lec. Notes \textbf{308}, Cambridge Univ. Press. 2004. \item [[Ralph Cohen]], John R. Klein, Dennis Sullivan, \emph{The homotopy invariance of the string topology loop product and string bracket}, J. of Topology 2008 \textbf{1}(2):391-408; \href{http://dx.doi.org/10.1112/jtopol/jtn001}{doi} \item [[Ralph Cohen]], \emph{Homotopy and geometric perspectives on string topology}, \href{http://math.stanford.edu/~ralph/skyesummary.pdf}{pdf} \end{itemize} In \begin{itemize}% \item [[Ralph Cohen]] and J.D.S. Jones, \emph{A homotopy theoretic realization of string topology} , Math. Ann. 324 (2002), no. 4, (\href{http://arxiv.org/abs/math/0107187}{arXiv:0107187}) \end{itemize} the string product was realized as genuine pull-push (in terms of dual [[fiber integration]] via [[Thom isomorphism]]). The interpretation of closed string topology as an [[HQFT]] is discussed in \begin{itemize}% \item [[Ralph Cohen]], [[Veronique Godin]], \emph{[[A Polarized View of String Topology]]} (\href{http://arxiv.org/abs/math/0303003}{arXiv:math/0303003}) \end{itemize} \begin{itemize}% \item Hirotaka Tamanoi, \emph{Loop coproducts in string topology and triviality of higher genus TQFT operations} (2007) (\href{http://arxiv.org/abs/0706.1276}{arXiv}) \end{itemize} A detailed discussion and generalization to the open-closed [[HQFT]] in the presence of a single space-filling [[brane]] is in \begin{itemize}% \item [[Veronique Godin]], \emph{Higher string topology operations} (2007)(\href{http://arxiv.org/abs/0711.4859}{arXiv:0711.4859}) \end{itemize} The generalization to multiple [[D-brane]]s is discussed in \begin{itemize}% \item [[Sander Kupers]], \emph{String topology operations} MS thesis (2011) (\href{http://math.stanford.edu/~kupers/thesis7thjune2011.pdf}{pdf}) \end{itemize} For target space a [[classifying space]] of a [[finite group]] or [[compact space|compact]] [[Lie group]] this is discussed in \begin{itemize}% \item David Chataur, [[Luc Menichi]], \emph{String topology of classifying spaces} (\href{http://math.univ-angers.fr/perso/lmenichi/String_Classifiant09.pdf}{pdf}) \end{itemize} Arguments that this string-topology [[HQFT]] should refine to a chain-level theory -- a [[TCFT]] -- were given in \begin{itemize}% \item [[Kevin Costello]], \emph{Topological conformal field theories and Calabi-Yau $A_\infty$-categories} (2004) , (\href{http://arxiv.org/abs/0412149}{arXiv:0412149}) \end{itemize} and \begin{itemize}% \item [[Jacob Lurie]], \emph{[[On the Classification of Topological Field Theories]]} \end{itemize} (see example 4.2.16, remark 4.2.17). For the string product and the BV-operator this extension has been known early on, it yields a [[homotopy BV algebra]] considered around page 101 of \begin{itemize}% \item [[Scott Wilson]], \emph{On the Algebra and Geometry of a Manifold's Chains and Cochains} (2005) (\href{http://qcpages.qc.cuny.edu/~swilson/main.pdf}{pdf}) \end{itemize} Evidence for the existence of the [[TCFT]] version by exhibiting a [[dg-category]] that looks like it ought to be the dg-category of string-topology [[branes]] (hence ought to correspond to the TCFT under the suitable version of the [[TCFT]]-version of the [[cobordism hypothesis]]) is discussed in \begin{itemize}% \item [[Andrew Blumberg]], [[Ralph Cohen]], [[Constantin Teleman]], \emph{Open-closed field theories, string topology, and Hochschild homology} (\href{http://arxiv.org/abs/0906.5198}{arXiv:0906.5198}) \end{itemize} Refinements of string topology from [[homology groups]] to the full [[ordinary homology]]-[[spectra]] is discussed in (\hyperlink{BlumbergCoheneTeleman09}{Blumberg-Cohen-Teleman 09}) and in \begin{itemize}% \item [[Ralph Cohen]], [[John Jones]], \emph{A homotopy theoretic realization of string topology}, Mathematische Annalen (\href{http://arxiv.org/abs/math/0107187}{arXiv:math/0107187}) \item [[Ralph Cohen]], [[John Jones]], \emph{Gauge theory and string topology} (\href{http://arxiv.org/abs/1304.0613}{arXiv:1304.0613}) \end{itemize} A generalization of string topology with target manifolds generalized to [[orbifolds]] is discussed in \begin{itemize}% \item Alejandro Adem, Johanna Leida, Yongbin Ruan, \emph{Orbifolds and string topology}, Cambridge Tracts in Mathematics 171, 2007 (\href{http://www.math.colostate.edu/~renzo/teaching/Orbifolds/Ruan.pdf}{pdf}) \end{itemize} Further generalization to target spaces that are more generally [[differentiable stacks]]/[[Lie groupoids]] is discussed in \begin{itemize}% \item [[Kai Behrend]], [[Gregory Ginot]], [[Behrang Noohi]], [[Ping Xu]], \emph{String topology for stacks}, (89 pages) \href{http://arxiv.org/abs/0712.3857}{arxiv/0712.3857}; \emph{String topology for loop stacks}, C. R. Math. Acad. Sci. Paris, \textbf{344} (2007), no. 4, 247--252, (6 pages, \href{}{pdf}) \item Po Hu, \emph{Higher string topology on general spaces}, Proc. London Math. Soc. \textbf{93} (2006) 515-544, \href{http://dx.doi.org/10.1112/S0024611506015838}{doi}, \href{http://www.math.wayne.edu/~po/koszul04.ps}{ps} \end{itemize} The relation between string topology and [[Hochschild cohomology]] in dimenion $\gt 1$ is discussed in \begin{itemize}% \item [[Dmitry Vaintrob]], \emph{The String topology BV algebra, Hochschild cohomology and the Goldman bracket on surfces} (\href{http://arxiv.org/abs/math/0702859}{arXiv:0702859}) \end{itemize} More developments are in \begin{itemize}% \item Eric Malm, \emph{String topology and the based loop space}, 2009 (\href{http://arxiv.org/abs/1103.6198}{arXiv:1103.6198}, \href{http://math.ucr.edu/~jbergner/ucr-st-present.pdf}{slides}) \end{itemize} \end{document}