\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{strong monad} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{2category_theory}{}\paragraph*{{2-Category theory}}\label{2category_theory} [[!include 2-category theory - contents]] \hypertarget{strong_monads}{}\section*{{Strong monads}}\label{strong_monads} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{concrete_definition}{Concrete definition}\dotfill \pageref*{concrete_definition} \linebreak \noindent\hyperlink{moggis_typing_rules_and_parameterized_definition}{Moggi's typing rules and parameterized definition}\dotfill \pageref*{moggis_typing_rules_and_parameterized_definition} \linebreak \noindent\hyperlink{uniqueness_of_strength_with_enough_points}{Uniqueness of strength with enough points}\dotfill \pageref*{uniqueness_of_strength_with_enough_points} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{strong monad} over a [[monoidal category]] $V$ is a [[monad]] in the [[bicategory]] of $V$-[[actegory|actegories]]. If $V$ is a [[monoidal closed category]], then a strong monad is the same thing as a $V$-[[enriched monad]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} For $V$ a [[monoidal category]] a \textbf{strong monad} over $V$ is a [[monad]] \begin{itemize}% \item in the $2$-[[2-category|category]] $V\text{-}Act$ of left $V$-[[actegory|actegories]] on [[category|categories]] \item on the object $V$ itself. \end{itemize} \end{defn} Here we regard $V$ as equipped with the canonical $V$-action on itself. \hypertarget{details}{}\subsection*{{Details}}\label{details} If we write $\mathbf{B}V$ for the one-object [[bicategory]] obtained by [[delooping]] $V$ once, we have \begin{displaymath} V\text{-}Act \simeq Lax2Funct(\mathbf{B}V, Cat) \,, \end{displaymath} where on the right we have the $2$-category of [[lax functor|lax 2-functors]] from $\mathbf{B}V$ to [[Cat]], lax [[natural transformations]] of and [[modifications]]. The category $V$ defines a canonical functor $\hat V : \mathbf{B}V \to Cat$. The strong monad, being a [[monad]] in this [[lax functor]] [[bicategory]] is given by \begin{itemize}% \item a lax [[natural transformation]] $T : \hat V \to \hat V$; \item [[modifications]] \begin{itemize}% \item unit: $\eta : Id_V \Rightarrow T$ \item product: $\mu : T \circ T \Rightarrow T$ \end{itemize} \item satisfying the usual uniticity and associativity constraints. \end{itemize} By the general logic of $(2,1)$-[[(n,k)-transformation|transformations]] the components of $T$ are themselves a certain [[functor]]. Then the \href{http://en.wikipedia.org/wiki/Strong_monad}{usual diagrams} that specify a strong monad \begin{itemize}% \item unitalness and functoriality of the component functor of $T$; \item naturalness of unit and product modifications. \end{itemize} \hypertarget{concrete_definition}{}\subsection*{{Concrete definition}}\label{concrete_definition} A more concrete definition is given in: \begin{itemize}% \item [[Anders Kock]], \emph{Strong functors and monoidal monads}, Arch. Math. (Basel) 23 (1972), 113--120. \end{itemize} and later in \begin{itemize}% \item [[Eugenio Moggi]]. Computational Lambda-Calculus and Monads. Proceedings of the Fourth Annual Symposium on Logic in Computer Science. 1989. p. 14--23. \end{itemize} A \emph{strong monad} over a category $C$ with finite products is a monad $(T, \eta, \mu)$ together with a natural transformation $t_{A,B}$ from $A \times T\;B$ to $T(A\times B)$ subject to three diagrams. ``Strengthening with 1 is irrelevant'': \begin{displaymath} \begin{array}{ccc} 1\times T\, A & \rightarrow & T\, A\\ \\ & t_{1,A}\searrow\phantom{t_{1,A}} & \downarrow\\ \\ & & T(1\times A) \end{array} \end{displaymath} ``Consecutive applications of strength commute'': \begin{displaymath} \begin{array}{ccccc} (A\times B)\times T\, C & \xrightarrow{t_{A\times B,C}} & T\,((A\times B)\times C)\\ \\ \cong\downarrow\phantom{\cong} & & & \phantom{\cong}\searrow\cong\\ \\ A\times(B\times T\, C) & \xrightarrow[A\times t_{B,C}]{} & A\times T\,(B\times C) & \xrightarrow[t_{A,B\times C}]{} & T(A\times(B\times C)) \end{array} \end{displaymath} ``Strength commutes with monad unit and multiplication'': \begin{displaymath} \begin{array}{ccccc} A\times B\\ \\ A\times\eta_{B}\downarrow\phantom{A\times\eta_{B}} & \phantom{\eta_{A\times B}}\searrow\eta_{A\times B}\\ \\ A\times T\, B & \xrightarrow{t_{A,B}} & T(A\times B)\\ \\ A\times\mu_{B}\uparrow\phantom{A\times\mu_{B}} & & & \phantom{\mu_{A\times B}}\nwarrow\mu_{A\times B}\\ \\ A\times T^{2}\, B & \xrightarrow{t_{A,T B}} & T(A\times T B) & \xrightarrow{T\: t_{A,B}} & T^{2}(A\times B) \end{array} \end{displaymath} More generally, if a monoidal category $V$ acts on a category $C$ \begin{displaymath} \bullet : V\times C\to C \end{displaymath} then a $V$-strength for a monad $T$ on $C$ is a family of morphisms $t_{A,B}:A\bullet T(B)\to T(A\bullet B)$ satisfying similar commutative diagrams. \hypertarget{moggis_typing_rules_and_parameterized_definition}{}\subsection*{{Moggi's typing rules and parameterized definition}}\label{moggis_typing_rules_and_parameterized_definition} Moggi proposed the following typing rules for a sequence operator: \begin{displaymath} \frac{\Gamma \vdash t:X}{\Gamma\vdash \eta(t):T(X)} \qquad \frac{\Gamma,x:X \vdash u: T(Y)\quad \Delta\vdash t:T(X)} {\Gamma,\Delta\vdash let\,x=t\,in\,u:T(Y)} \end{displaymath} To interpret these rules in a category, where types are interpreted as objects and judgements are interpreted as morphisms, we require \begin{itemize}% \item For each object $X$, an object $T(X)$; \item a morphism $\eta_X:X\to T(X)$ for each $X$ (equivalently, a natural family of functions $C(\Gamma,X)\to C(\Gamma, T(X))$); \item a family of functions $*_{\Gamma,\Delta}:C(\Gamma\otimes X, T(Y))\times C(\Delta,T(X))\to C(\Gamma\otimes \Delta,T(Y))$ natural in $\Gamma$ and $\Delta$, \end{itemize} such that \begin{itemize}% \item $f * \eta =f$, $\eta * f=f$, and $h*(g*f)=(h*g)*f$. \end{itemize} With the subscripts: \begin{itemize}% \item $f *_{\Gamma,X} \eta_X = f$ and $\eta *_{I,\Delta} f=f$, and $h *_{\Gamma,\Delta\otimes \Xi} (g *_{\Delta,\Xi} f) = (h *_{\Gamma,\Delta\otimes X} g) *_{\Gamma\otimes\Delta,\Xi} f$. \end{itemize} Such a structure is the same thing as a strong monad. One way to see this is to notice that it is essentially the same as the Kleisli triple form of an $\hat C$-[[enriched monad]] on $C$, where $\hat C$ is the category of [[presheaves]] on $C$ regarded with the [[Day convolution]] monoidal structure. More concretely, \begin{displaymath} \eta_{X\otimes Y}*_{X,T(Y)} id_{T(Y)}:X\otimes T(Y)\to T(X\otimes Y) \end{displaymath} is a strength map. \hypertarget{uniqueness_of_strength_with_enough_points}{}\subsection*{{Uniqueness of strength with enough points}}\label{uniqueness_of_strength_with_enough_points} \begin{theorem} \label{}\hypertarget{}{} \textbf{(Moggi)} Let $C$ be a category with finite products and let $T$ be a strong monad on $C$. For any points $x:1\to X$, $y:1\to T(Y)$, we have \begin{displaymath} t\circ(x,y)\ = \ T((x\circ !_Y),id_Y)\circ y\ : 1 \to T(X\times Y) \end{displaymath} Hence if $1$ is a [[generator]], i.e. $C(1,-):C\to Set$ is faithful, then there is at most one strength for any ordinary monad on $C$. \end{theorem} In other words, a monad being strong is a property rather than structure in a category with enough points. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[tensorial strength]] \item [[monoidal monad]] \item [[commutative monad]] \item [[enriched monad]] \item [[monad (in computer science)]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Strong monads were defined by Kock, as an alternative description of enriched monads. \begin{itemize}% \item [[Anders Kock]], \emph{Strong functors and monoidal monads}, Arch. Math. (Basel) 23 (1972), 113--120. \end{itemize} Usually strong monads are described explicitly in terms of the components of the above structure. The above repackaging of that definition appears in the blog post \begin{itemize}% \item [[John Baez]], \emph{The Monads Hurt My Head -- But Not Anymore} (\href{http://golem.ph.utexas.edu/category/2009/07/the_monads_hurt_my_head_but_no.html#c025476}{blog}) \end{itemize} Strong monads are important in Moggi's theory of notions of computation (see [[monad (in computer science)]]): \begin{itemize}% \item [[Eugenio Moggi]]. Notions Of Computation And Monads. Information And Computation. 1991;93:55--92. \item [[Eugenio Moggi]]. Computational Lambda-Calculus and Monads. Proceedings of the Fourth Annual Symposium on Logic in Computer Science. 1989. p. 14--23. \end{itemize} [[!redirects strong monads]] \end{document}