\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{structure in model theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{elementary_classes_of_structures}{Elementary classes of structures}\dotfill \pageref*{elementary_classes_of_structures} \linebreak \noindent\hyperlink{categories_of_structures}{Categories of structures}\dotfill \pageref*{categories_of_structures} \linebreak \noindent\hyperlink{CategoricalInterpretation}{Interpretation in categorical logic}\dotfill \pageref*{CategoricalInterpretation} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{[[structure]]} in [[mathematics]] (also ``mathematical structure'') is often taken to be a [[set]] equipped with some choice of elements, with some operations and some relations. Such as for instance the ``structure of a [[group]]''. In [[model theory]] this concept of mathematical structure is formalized by way of [[formal logic]]. Notice however that by far not every concept studied in [[mathematics]] fits as an example of a mathematical structure in the sense of classical [[first-order theory|first order]] model theory, described \hyperlink{Definition}{below}. For instance a concept as basic as that of [[topological spaces]] fails to be a structure in the sense of classical model theory (see \hyperlink{MathSEDisc}{here}). In [[category theory]] there is a more flexible concept of \emph{[[structure]]}, see there. \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Given a [[first-order language]] $L$, which consists of symbols ([[variable|variable symbols]], constant symbols, [[function symbols]] and [[relation]] symbols including $\epsilon$) and [[quantifiers]]; a \textbf{structure} for $L$, or ``$L$-structure'', is a [[set]] $M$ with an \textbf{interpretation} for symbols: \begin{itemize}% \item if $R\in L$ is an $n$-ary [[relation]] symbol, then its interpretation $R^M\subset M^n$ \item if $f\in L$ is an $n$-ary [[function]] symbol, then $f^M:M^n\to M$ is a function \item if $c\in L$ is a constant symbol, then $c^M\in M$ \end{itemize} The underlying set $M$ of the structure is referred to as (universal) \textbf{domain} of the structure (or the universe of the structure). Interpretation for an $L$-structure inductively defines an interpretation for well-formed formulas in $L$. We say that a sentence $\phi\in L$ is [[true]] in $M$ if $\phi^M$ is true. Given a [[theory]] $(L,T)$, which is a language $L$ together with a given set $T$ of sentences in $L$ ([[axioms]]), the interpretation in a structure $M$ makes those sentences true or false; if all the sentences in $T$ are true in $M$ we say that $M$ is a [[model]] of $(L,T)$. In [[model theory]], given a language $L$, a structure for $L$ is the same as a [[model]] of $L$ as a [[theory]] with an empty set of axioms. Conversely, a \emph{model} of a theory is a \emph{structure} of its underlying language that satisfies the axioms demanded by that theory. There is a generalization of structure for languages/theories with multiple domains or sorts, called multi-sorted languages/theories. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{elementary_classes_of_structures}{}\subsubsection*{{Elementary classes of structures}}\label{elementary_classes_of_structures} A class $K$ of structures of a given signature is an \textbf{elementary class} if there is a [[first-order theory]] $T$ such that $K$ consists precisely of all models of $T$. There is a vast generalizations for higher-order theories (and more), see at \emph{[[abstract elementary class]]} and \emph{[[metric abstract elementary class]]}. \hypertarget{categories_of_structures}{}\subsubsection*{{Categories of structures}}\label{categories_of_structures} Every [[algebraic category]] whose [[forgetful functor]] preserves [[filtered colimits]] is the category of [[models]] for some [[first-order theory]]. The converse is false. A detailed discussion of characterizations of [[categories]] of structures in the sense of model theory is in (\hyperlink{BekeRosciky11}{Beke-Rosciky 11}). \hypertarget{CategoricalInterpretation}{}\subsubsection*{{Interpretation in categorical logic}}\label{CategoricalInterpretation} Every [[first-order language]] $L$ gives rise to a [[first-order hyperdoctrine]] with [[equality]] freely generated from $L$. Denoting this by $T(L)$, the base category $C_{T(L)}$ consists of sorts (which are products of basic sorts) and functional terms between sorts; the [[predicates]] are [[equivalence classes]] of [[relations]] definable in the language. The construction of $T(L)$ depends to some extent on the [[logic]] we wish to impose; for example, we could take the free [[Boolean hyperdoctrine]] generated from $L$ if we work in [[classical logic]]. There is also a ``tautological'' first order hyperdoctrine whose base category is $Set$, and whose predicates are given by the power set functor \begin{displaymath} P \colon Set^{op} \to Bool \end{displaymath} and then an interpretation of $L$, as described above, amounts to a morphism of hyperdoctrines $T(L) \to Taut(Set)$. This observation opens the door to a widened interpretation of ``interpretation'' in [[categorical logic]], where we might for instance generalize [[Set]] to any other [[topos]] $E$, and use instead $Sub \colon E^{op} \to Heyt$ (taking an object of $E$ to its [[Heyting algebra]] of [[subobjects]]) as the receiver of interpretations. This of course is just one of many possibilities. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model theory]] \item [[first-order theory]] \item [[interpretation]] \item [[diagram of a first-order structure]] \item [[exceptional structure]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Standard textbook accounts include \begin{itemize}% \item [[Wilfrid Hodges]], section 1 of \emph{A shorter model theory}, Cambridge University Press (1997) \item Chen Chung Chang, H. Jerome Keisler, \emph{Model Theory. Studies in Logic and the Foundations of Mathematics}. 1973, 1990, Elsevier. \end{itemize} Characterizations of [[categories]] of model-theoretic structures and [[homomorphisms]] between them (certain accessible categories) is discussed in \begin{itemize}% \item [[Tibor Beke]], [[Jiří Rosický]], \emph{Abstract elementary classes and accessible categories}, 2011 (\href{http://www.math.muni.cz/~rosicky/papers/elem7.pdf}{pdf}) \end{itemize} Online discussion includes \begin{itemize}% \item Math.SE \emph{\href{http://math.stackexchange.com/questions/97856/topological-spaces-as-model-theoretic-structures-definitions}{Topological spaces as model-theoretic structures --- definitions?}} [[!redirects structures in model theory]] \end{itemize} [[!redirects mathematical structure]] [[!redirects mathematical structures]] [[!redirects first-order structure]] [[!redirects structure (in model theory)]] [[!redirects structures (in model theory)]] [[!redirects first-order structures]] \end{document}