\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{structured set} \hypertarget{structured_sets}{}\section*{{Structured sets}}\label{structured_sets} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{abstract}{Abstract}\dotfill \pageref*{abstract} \linebreak \noindent\hyperlink{Concrete}{Concrete}\dotfill \pageref*{Concrete} \linebreak \noindent\hyperlink{conversions}{Conversions}\dotfill \pageref*{conversions} \linebreak \noindent\hyperlink{abstract_to_concrete}{Abstract to concrete}\dotfill \pageref*{abstract_to_concrete} \linebreak \noindent\hyperlink{concrete_to_abstract}{Concrete to abstract}\dotfill \pageref*{concrete_to_abstract} \linebreak \noindent\hyperlink{back_and_forth}{Back and forth}\dotfill \pageref*{back_and_forth} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{structured_objects}{Structured objects}\dotfill \pageref*{structured_objects} \linebreak \noindent\hyperlink{see_also}{See also}\dotfill \pageref*{see_also} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A structured set is, of course, a [[set]] equipped with [[extra structure]]. It is not the individual structured set that matters so much as the [[category]] of sets with a particular sort of structure. \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{abstract}{}\subsubsection*{{Abstract}}\label{abstract} Very abstractly, we may define a \textbf{structured set} as an [[object]] of any [[concrete category]], that is an object of any category $C$ equipped with a [[faithful functor]] $U\colon C \to Set$ to the [[category of sets]]. (Some authors require that $U$ be [[representable functor|representable]] for a concrete category, but we do not need that here.) Given two structured sets $X$ and $Y$ (in the same category $C$), a [[function]] $f\colon U(X) \to U(Y)$ between their underlying sets \textbf{preserves} the structure if it lies in the image of $U$, that is if there exists a (necessarily unique since $U$ is faithful) [[morphism]] $\tilde{f}\colon X \to Y$ in $C$ such that $U(\tilde{f}) = f$. \hypertarget{Concrete}{}\subsubsection*{{Concrete}}\label{Concrete} More concretely, we may define a \textbf{type of structure on sets} as an operation $T$ that, to any set $A$, assigns a set $T(A)$ of \textbf{$T$-structures} on $A$. At minimum, we should have $T(A) \cong T(B)$ whenever $A \cong B$ (where $\cong$ is [[isomorphism]] in $Set$), so that the concept is [[structural set theory|structural]]. But for good behaviour, we actually want something more coherent; we want an additional operation that, to any [[bijection]] $f\colon A \to B$, assigns a bijection $T(f)\colon T(A) \to T(B)$, such that: \begin{itemize}% \item $T(\id_A) = \id_{T(A)}$, \item $T(f g) = T(f) T(g)$. \end{itemize} In other words, $T\colon Set_\cong \to Set_\cong$ (or equivalently $T\colon Set_\cong \to Set$) is a [[functor]] from the [[underlying groupoid]] of $Set$ to itself (or equivalently to all of $Set$). In particular, any [[automorphism]] of a single set $A$ defines an automorphism of the $T$-structures on $A$, giving an [[action]] of the [[symmetric group]] $S_A$ on $T(A)$. (Compare the notion of [[structure type]] from [[combinatorics]], which is a set-valued functor on the groupoid of [[finite sets]]. Every combinatorial structure type can be interpreted as a type of structure, where only finite sets are capable of supporting the structure.) Given a type $T$ of structure on sets, we define a \textbf{$T$-structured set} to be a set $A$ equipped with an [[element]] of $T(A)$. Given $T$-structured sets $X = (A,\sigma)$ and $Y = (B,\tau)$, a bijection $f\colon A \to B$ \textbf{preserves} the $T$-structure on $X$ and $Y$ if $T(f)(\sigma) = \tau$. In general, there is no notion of whether an arbitrary function $f\colon A \to B$ preserves $T$-structure, although such a notion may be defined in many cases. So to get a concrete construction of a [[concrete category]], we specify whatever morphisms we like, subject to the restriction that they form a category and have the correct [[core]] given above. [[Bourbaki]]'s theory of structure, while not described in category-theoretic terms, is essentially the above. \hypertarget{conversions}{}\subsection*{{Conversions}}\label{conversions} Morally, either of the abstract and concrete versions can be converted into the other. Technically, there are some restrictions. \hypertarget{abstract_to_concrete}{}\subsubsection*{{Abstract to concrete}}\label{abstract_to_concrete} Given a category $C$ and a faithful functor $U\colon C \to Set$, we may define a type $T$ of structure on sets as follows: For each set $A$, consider the [[essential fiber|essential fibre]] of $U$ over $A$, the collection of pairs $(X,f)$ where $X$ is an object of $C$ and $f\colon U(X) \to A$ is a bijection. We consider two such pairs $(X,\sigma)$ and $(Y,\tau)$ to be [[equivalent]] if there is an [[isomorphism]] $h\colon X \to Y$ in $C$ such that $U(h) ; \tau = \sigma$. (Because $U$ is faithful, any such $h$ must be unique.) Define $T(A)$ to be the [[quotient set]] of the essential fibre modulo this [[equivalence relation]]. That is, a $T$-structure on $A$ is an equivalence class $[(X,\sigma)]$. Given a bijection $f\colon A \to B$, we must define $T(f)\colon T(A) \to T(B)$. So given $(X,\sigma)$ as above, let $T(f)$ map $[(X,\sigma)]$ to $[(X,\sigma;f)]$ in $T(B)$. It's easy to check that this is well defined as a function from $T(A)$ to $T(B)$; we can also check that this makes $T$ into a functor and that the abstract and concrete definitions of whether a bijection preserves $T$-structure agree. Technicality: If $C$ is a [[large category]], then $T(A)$ might be a [[proper class]] instead of a set. In this case, we can pass to a larger [[universe]]; it is not essential for $T\colon Set_\cong \to Set$ that both copies of $Set$ be the same size. But for the above description to make sense as it is, we must require that $U$ have essentially small fibres. \hypertarget{concrete_to_abstract}{}\subsubsection*{{Concrete to abstract}}\label{concrete_to_abstract} Given a type $T$ of structure on sets, we cannot quite reconstruct the category $C$, but we can reconstruct its [[core]] $C_\cong$. That is, we can say what the [[objects]] and [[isomorphisms]] of $C$ are, if not the [[morphisms]] of $C$ in general. An object of $C$ is simply a pair $(A,\sigma)$ consisting of a set $A$ and an element $\sigma$ of $T(A)$. Given two such objects, an isomorphism from $(A,\sigma)$ to $(B,\tau)$ is simply a structure-preserving map from $A$ to $B$, that is a bijection $f\colon A \to B$ such that $T(f)(\sigma) = \tau$. Then it is straightforward to check that this defines a [[groupoid]] $C_\cong$. This groupoid, the \textbf{groupoid of $T$-structured sets}, is naturally equipped with a faithful [[forgetful functor]] $U\colon C_\cong \to Set$, given by $U(A,\sigma) \coloneqq A$. While defining isomorphisms of structured sets is an exact science, choosing more general morphisms of structured sets is something of an art. In principle, we may define a (\emph{not} the!) \textbf{category of $T$-structured sets} by picking, for each $(A,\sigma)$ and $(B,\tau)$, a collection $Hom_{\sigma,\tau}(A,B)$ of [[functions]] from $A$ to $B$, such that: \begin{itemize}% \item whenever $f \in Hom_{\sigma,\tau}(A,B)$ and $g \in Hom_{\tau,\upsilon}(B,C)$, then $f ; g \in Hom_{\sigma,\upsilon}(A,C)$; \item the [[identity map]] on $A$ belongs to $Hom_{\sigma,\sigma}(A,A)$; and \item a [[bijection]] $f$ from $A$ to $B$ is an isomorphism (as defined above) if and only if both $f \in Hom_{\sigma,\tau}(A,B)$ and $f^{-1} \in Hom_{\tau,\sigma}(B,A)$. \end{itemize} The last condition states precisely that the [[underlying groupoid]] of any concrete category of $T$-structured sets is the groupoid of $T$-structured sets. Any category of $T$-structured sets is still (like the groupoid of such sets) a concrete category. \hypertarget{back_and_forth}{}\subsubsection*{{Back and forth}}\label{back_and_forth} If we start with a type $T$ of structures on sets, construct from this a groupoid $C_\cong$ and a faithful functor $U\colon C_\cong \to Set$ and then construct from this another type $T'$ of structures, then $T'$ will be equivalent to $T$ in the sense that there is a [[natural isomorphism]] between them as functors from $Set_\cong$ to $Set$. If we start with a category $C$ and a faithful functor $U\colon C \to Set$, construct from this a type of structures $T\colon Set_\cong \to Set$, and then construct from this a groupoid $C_\cong$ with a faithful functor $U\colon C_\cong \to Set$, then $C_\cong$ will in fact be the [[core]] of $C$, with $U\colon C_\cong \to Set$ to restriction of $U\colon C \to Set$ to this core, up to [[equivalence of categories]]. (Do we need proofs?) Thus the abstract and concrete approaches to structured sets are equivalent, except that the concrete approach does not include a specification of what are the noninvertible morphisms between structured sets. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Almost everything in contemporary [[mathematics]] is an example of a structured set; here we list only a few representative ones (and perhaps also some exceptions). \begin{itemize}% \item [[sets]] themselves (trivially); \item [[groups]], [[rings]], and other objects of [[universal algebra]]; \item [[topological spaces]] and other concrete (based on sets of [[points]]) notions of [[spaces]]; \item some other notions of [[spaces]] such as [[locales]], as long as we only consider isomorphisms, but \emph{not} using functions as the other morphisms; \item \emph{not} some other notions of spaces such as [[homotopy types]] (at least if defined via topological spaces); \item [[strict categories]] (where the underlying set is the set of [[morphisms]]) but \emph{not} [[categories]] treated up to [[equivalence of categories|equivalence]]. \end{itemize} \hypertarget{structured_objects}{}\subsection*{{Structured objects}}\label{structured_objects} Given any category $S$ whatsoever, we may define a \textbf{type of structure} on objects of $S$ as a functor $T\colon S_\cong \to Set$ to $Set$ from the underyling groupoid of $S$. Then any [[faithful functor]] $U\colon C \to S$ whatsoever defines a type of structure on objects of $S$ (at least if its fibres are essentially small), in the same way as a concrete category defines a type of structure on sets. Indeed, we say that $U$ presents the objects of $C$ as objects of $S$ with \textbf{[[extra structure]]}. \hypertarget{see_also}{}\subsection*{{See also}}\label{see_also} \begin{itemize}% \item [[category of elements]] \item [[Grothendieck construction]] \end{itemize} [[!redirects structured set]] [[!redirects structured sets]] \end{document}