\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{subspace topology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{UniversalProperty}{Universal property}\dotfill \pageref*{UniversalProperty} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{variations}{Variations}\dotfill \pageref*{variations} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{SubspaceTopology}\hypertarget{SubspaceTopology}{} \textbf{([[topological subspace|subspace topology]])} Let $(X, \tau_X)$ be a [[topological space]], and let $S \subset X$ be a [[subset]] of its underlying [[set]]. Then the corresponding \emph{[[topological subspace]]} has $S$ as its underlying set, and its [[open subsets]] are those subsets of $S$ which arise as restrictions of open subsets of $X$ (i.e. [[intersections]] of open subsets of $X$ with $S$): \begin{displaymath} \left( U_S \subset S\,\,\text{open} \right) \,\Leftrightarrow\, \left( \underset{U_X \in \tau_X}{\exists} \left( U_S = U_X \cap S \right) \right) \,. \end{displaymath} In other words, $\tau_Y$ is the [[finer topology|smallest topology]] on $Y$ such that the inclusion $Y \hookrightarrow X$ is [[continuous map|continuous]] (the [[initial topology]] on that map). The picture on the right shows two open subsets inside the [[square]], regarded as a [[topological subspace]] of the [[plane]] $\mathbb{R}^2$: \begin{quote}% graphics grabbed from \hyperlink{Munkres75}{Munkres 75} \end{quote} \end{defn} The pair $(Y,\tau_Y)$ is then said to be a \emph{topological [[subspace]]} of $(X,\tau_X)$. The induced topology is for that reason sometimes called the \textbf{subspace topology} on $Y$. A continuous function that factors as a [[homeomorphism]] onto its [[image]] equipped with the subspace topology is called an \emph{[[embedding of topological spaces]]}. A property of topological spaces is said to be \textbf{hereditary} if its satisfaction for a topological space $X$ implies its satisfaction for all topological subspaces of $X$. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[open subsets]] of a [[closed interval]] $[0,1] \subset \mathbb{R}$ regarded as a topological subspace of the [[real line]] equipped with its [[Euclidean space|Euclidean]] [[metric topology]] is generated from the [[sub-base of a topology|sub-base]] $\beta = \{ [0, a) ,(a,1]\}_{a \in [0,1]}$. \end{itemize} The image on the right shows open subsets in the closed square $[0,1]^2$, regarded as a topological subspace of the Euclidean plane \begin{itemize}% \item A subset of a [[metric space]] equipped with its [[induced metric]] is a subspace with respect to the corresponding [[metric topologies]]. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{UniversalProperty}{}\subsubsection*{{Universal property}}\label{UniversalProperty} \begin{prop} \label{UniversalPropertyOfSupspaceInclusion}\hypertarget{UniversalPropertyOfSupspaceInclusion}{} \textbf{([[universal property]] of [[subspace topology]])} Let $U \overset{i}{\longrightarrow} X$ be an [[injective function|injective]] [[continuous function]] between [[topological spaces]]. Then this is a [[topological subspace|subspace inclusion]] (Def. \ref{SubspaceTopology}) precisely if it satisfies the following [[universal property]]: \begin{itemize}% \item For $Z$ any topological space, a [[function]] $Z \overset{f}{\longrightarrow} U$ (of underlying [[sets]]) is [[continuous function|continuous]] precisely if the [[composition]] $i \circ f$ is continuous as a function to $X$: \begin{displaymath} \itexarray{ Z &\overset{f}{\longrightarrow}& U \\ &{}_{\mathllap{i \circ f}}\searrow& \Big\downarrow{}^{\mathrlap{i}} \\ && X } \end{displaymath} \end{itemize} \end{prop} The elementary \textbf{proof} is spelled out, for instance, in \hyperlink{Terilla14}{Terilla 14, theorem 1}. Of course this is just another way to speak of the [[initial topology]]. The universal characterization of Prop. \ref{UniversalPropertyOfSupspaceInclusion} lends itself to formalization via axioms for [[cohesion]]: \begin{defn} \label{SharpModalityOnTopologicalSpaces}\hypertarget{SharpModalityOnTopologicalSpaces}{} \textbf{([[sharp modality]] on [[topological spaces]])} Let \begin{displaymath} Set \underoverset {\underset{coDisc}{\longrightarrow}} {\overset{\Gamma}{\longleftarrow}} {\bot} Top \end{displaymath} be the pair of [[adjoint functors]] given by sending a [[topological space]] $X$ to its underlying [[set]] $\Gamma(X)$, and by equipping a [[set]] $S$ with the [[codiscrete topology]] making it a [[codiscrete space]] $coDisc(X)$. Write \begin{displaymath} \sharp \;\coloneqq\; coDisc \circ \Gamma \;\colon\; Top \longrightarrow Top \end{displaymath} for the induced [[modal operator]] on [[Top]] ([[sharp modality]]). We write \begin{displaymath} id \overset{\eta^{\sharp}}{\longrightarrow} \sharp \end{displaymath} for the [[unit of an adjunction|unit]] morphism of this [[adjunction]]. Notice that this means that for any [[topological space]] $Z$, \emph{every} function of underlying sets \begin{displaymath} Z \longrightarrow \sharp X \end{displaymath} is [[continuous functions]], hence that continuous functions into $\sharp X$ are in [[natural bijection]] to underlying functions of [[sets]]. This is the statement of the adjunction hom-isomorphism: \begin{displaymath} Hom_{Top}( Z, \sharp X ) \;\simeq\; Hom_{Set}(\Gamma(Z), \Gamma(X)) \,. \end{displaymath} \end{defn} \begin{prop} \label{UniversalPropertyViaSharpModality}\hypertarget{UniversalPropertyViaSharpModality}{} Let $U \overset{i}{\longrightarrow} X$ be an [[injective function|injective]] [[continuous function]] between [[topological spaces]]. Then this is a [[topological subspace|subspace inclusion]] (Def. \ref{SubspaceTopology}) precisely if its [[natural transformation|naturality square]] of the $\sharp$-[[unit of an adjunction|unit]] (Def. \ref{SharpModalityOnTopologicalSpaces}) \begin{displaymath} \itexarray{ U &\overset{ \eta^\sharp_U }{\longrightarrow}& \sharp U \\ {}^{\mathllap{i}}\Big\downarrow && \Big\downarrow{}^{\mathrlap{\sharp i}} \\ X &\underset{\eta^\sharp_X}{\longrightarrow}& \sharp X } \end{displaymath} is a [[pullback]] square. \end{prop} \begin{proof} By the [[universal property]] of a [[pullback]]/[[fiber product]] and the nature of $\sharp$, we have $U \simeq X \times_{\sharp X} \sharp U$ precisely if continuous functions out of some topological space $Z$ into $U$ are in [[natural bijection]] with continuous functions $Z \to X$ whose underlying function $Z \to X \to \sharp X$ factors through the underlying function of $i$. This implies the statement by Prop. \ref{UniversalPropertyOfSupspaceInclusion}. \end{proof} \begin{remark} \label{FormulationInCohesiveHoTT}\hypertarget{FormulationInCohesiveHoTT}{} \textbf{(formulation in [[cohesive homotopy type theory]])} The pullback square of the $\sharp$-unit in Prop. \ref{UniversalPropertyViaSharpModality} should correspond (after generalizing from [[topological spaces]] to suitable [[topological ∞-groupoids]]) to the [[categorical semantics]] of what in [[cohesive homotopy type theory]] is the statement that the [[characteristic function]] \begin{displaymath} \chi_U \;\colon\; X \to Prop \end{displaymath} to the [[universe of propositions]] factors through the universe of [[sharp modality|sharp]]-[[modal types]]. In this form topological subspace inclusions are characterized in \hyperlink{Shulman15}{Shulman 15, Remark 3.14}. \end{remark} \hypertarget{general}{}\subsubsection*{{General}}\label{general} A subspace $i: Y \hookrightarrow X$ is \textbf{closed} if $Y$ is [[closed subset|closed]] as a subset of $X$ (or if $i$ is a [[closed map]]), and is \textbf{open} if $Y$ is open as a subset of $X$ (or if $i$ is an [[open map]]). \begin{prop} \label{TopologicalEmbeddingsAreTheRegularMonos}\hypertarget{TopologicalEmbeddingsAreTheRegularMonos}{} Topological subspace inclusions ([[topological embedding]]) are precisely the [[regular monomorphisms]] in the [[category]] [[Top]] of all [[topological spaces]]. \end{prop} For example, the [[equalizer]] of two maps $f, g \colon X \stackrel{\to}{\to} Y$ in [[Top]] is computed as the equalizer at the underlying-set level, equipped with the subspace topology. \begin{lemma} \label{pushout}\hypertarget{pushout}{} The [[pushout]] in [[Top]] of any (closed/open) subspace $i \colon A \hookrightarrow B$ along any [[continuous function]] $f \colon A \to C$, \begin{displaymath} \itexarray{ A & \stackrel{i}{\hookrightarrow} & B \\ \mathllap{f} \downarrow & po & \downarrow \mathrlap{g} \\ C & \underset{j}{\hookrightarrow} & D, } \end{displaymath} is a (closed/open) subspace $j: C \hookrightarrow D$. \end{lemma} \begin{proof} Since $U = \hom(1, -): Top \to Set$ is [[faithful functor|faithful]], we have that monos are reflected by $U$; also monos and pushouts are preserved by $U$ since $U$ has both a [[left adjoint]] and a [[right adjoint]]. In $Set$, the pushout of a mono along any map is a mono, so we conclude $j$ is monic in $Top$. Furthermore, such a pushout diagram in $Set$ is also a pullback, so that we have the [[Beck-Chevalley condition|Beck-Chevalley equality]] $\exists_i \circ f^\ast = g^\ast \exists_j \colon P(C) \to P(B)$ (where $\exists_i \colon P(A) \to P(B)$ is the [[direct image]] map between [[power sets]], and $f^\ast: P(C) \to P(A)$ is the [[inverse image]] map). To prove that $j$ is a subspace, let $U \subseteq C$ be any open set. Then there exists open $V \subseteq B$ such that $i^\ast(V) = f^\ast(U)$ because $i$ is a subspace inclusion. If $\chi_U \colon C \to \mathbf{2}$ and $\chi_V \colon B \to \mathbf{2}$ are the maps to [[Sierpinski space]] that classify these open sets, then by the universal property of the pushout, there exists a unique continuous map $\chi_W \colon D \to \mathbf{2}$ which extends the pair of maps $\chi_U, \chi_V$. It follows that $j^{-1}(W) = U$, so that $j$ is a subspace inclusion. If moreover $i$ is an open inclusion, then for any open $U \subseteq C$ we have that $j^\ast(\exists_j(U)) = U$ (since $j$ is monic) and (by Beck-Chevalley) $g^\ast(\exists_j(U)) = \exists_i(f^\ast(U))$ is open in $B$. By the definition of the topology on $D$, it follows that $\exists_j(U)$ is open, so that $j$ is an open inclusion. The same proof, replacing the word ``open'' with the word ``closed'' throughout, shows that the pushout of a closed inclusion $i$ is a closed inclusion $j$. \end{proof} A similar (but even simpler) line of argument establishes the following result. \begin{lemma} \label{transfinite}\hypertarget{transfinite}{} Let $\kappa$ be an [[ordinal]], viewed as a [[preorder]] category, and let $F: \kappa \to Top$ be a functor that preserves [[directed colimits]]. Then if $F(i \leq j)$ is a (closed/open) subspace inclusion for each morphism $i \leq j$ of $\kappa$, then the canonical map $F(0) \to colim_{i \in \kappa} F(i)$ is also a (closed/open) inclusion. \end{lemma} \hypertarget{variations}{}\subsection*{{Variations}}\label{variations} There is also a notion of a [[Grothendieck topology]] induced along a [[functor]] from a Grothendieck topology on another category (actually the input can be a somewhat more general [[coverage]], then the topology induced along the [[identity functor]] will serve as a sort of a completion). (this will be explained later). A topology may be induced by more than a [[function]] other than a subset inclusion, or indeed by a family of functions out of $Y$ (not necessarily all with the same [[target]]). However, the term `induced topology' is often (usually?) restricted to subspaces; the general concept is called a [[weak topology]]. (This construction can be done in any [[topological concrete category]]; in this generality it is often called an [[initial structure]] for a [[sink|source]].) The dual construction (involving functions to $Y$) is a [[strong topology]] (or [[final structure]] for a [[sink]]); an example is the [[quotient topology]] on a [[quotient space]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[embedding]] \item [[embedding of topological spaces]] \item [[embedding of smooth manifolds]] \end{itemize} [[!include universal constructions of topological spaces -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Nicolas Bourbaki]], \emph{Elements of Mathematics -- General topology}, 1971, 1990 \item [[James Munkres]], \emph{Topology}, Prentice Hall (1975, 2000) \item [[John Terilla]], \emph{Notes on categories, the subspace topology and the product topology} 2014 (\href{https://math.mit.edu/~jhirsh/terilla_subspace_quotient.pdf}{pdf}) \item [[Mike Shulman]], \emph{Brouwer's fixed-point theorem in real-cohesive homotopy type theory}, Mathematical Structures in Computer Science Vol 28 (6) (2018): 856-941 (\href{https://arxiv.org/abs/1509.07584}{arXiv:1509.07584}, \href{https://doi.org/10.1017/S0960129517000147}{doi:10.1017/S0960129517000147}) \end{itemize} [[!redirects subspace topology]] [[!redirects subspace topologies]] [[!redirects topological subspace]] [[!redirects topological subspaces]] [[!redirects subspace of a topological space]] [[!redirects subspaces of a topological space]] \end{document}