\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{substitution} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{type_theory}{}\paragraph*{{Type theory}}\label{type_theory} [[!include type theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{syntactic_substitution}{Syntactic substitution}\dotfill \pageref*{syntactic_substitution} \linebreak \noindent\hyperlink{simultaneous_substitution}{Simultaneous substitution}\dotfill \pageref*{simultaneous_substitution} \linebreak \noindent\hyperlink{avoiding_variable_capture}{Avoiding variable capture}\dotfill \pageref*{avoiding_variable_capture} \linebreak \noindent\hyperlink{as_an_admissible_rule}{As an admissible rule}\dotfill \pageref*{as_an_admissible_rule} \linebreak \noindent\hyperlink{explicit_substitution}{Explicit substitution}\dotfill \pageref*{explicit_substitution} \linebreak \noindent\hyperlink{CategoricalSemantics}{Categorical semantics}\dotfill \pageref*{CategoricalSemantics} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Syntactic \emph{substitution} for [[variables]] is one of the basic operations in formal mathematics, such as symbolic [[logic]] and [[type theory|type theories]]. \hypertarget{syntactic_substitution}{}\subsection*{{Syntactic substitution}}\label{syntactic_substitution} Substitution is usually defined as an \emph{operation} on expressions containing variables. (These expressions may be [[terms]], [[formulas]], [[propositions]], [[dependent types]], etc.) Suppose that $P$ an expression in the [[context]] of a [[variable]] $x$, and that $t$ is an expression which has the same type as $x$. Then we denote by \begin{displaymath} P[t/x] \end{displaymath} the result of \textbf{substituting} $t$ for all occurrences of $x$ in $P$. For example, if $P$ is $x^2 + 2x y + 3$ and $t$ is $(y+z)$, then $P[t/x]$ is $(y+z)^2 + 2(y+z)y + 3$. Note that in this approach, substitution is an \emph{operation on syntax}, not an element of syntax itself. In particular, the bracket notation $[t/x]$ is part of ``meta-syntax'', not the syntax in question. That is, the literal string of symbols ``$P[t/x]$'' is not itself an expression in the language under consideration, but \emph{denotes} such an expression, in the same way that ``$2+2$'' is not literally an integer but \emph{denotes} the integer $4$. \hypertarget{simultaneous_substitution}{}\subsubsection*{{Simultaneous substitution}}\label{simultaneous_substitution} Substitution for multiple variables does not, in general, commute. That is, \begin{displaymath} P[t/x][s/y] \qquad\text{and}\qquad P[s/y][t/x] \end{displaymath} are not in general the same: the former substitutes $s$ for occurrences of $y$ in $t$, but not $t$ for occurrences of $x$ in $s$, while the latter has the opposite behavior. We also write \begin{displaymath} P[t,s/x,y] \end{displaymath} to denote the \emph{simultaneous substitution} of $t$ for $x$ and $s$ for $y$, in which \emph{neither} occurrences of $x$ in $s$ nor occurrences of $y$ in $t$ are substituted for; this is generally not the same as either iterated substitution. \hypertarget{avoiding_variable_capture}{}\subsubsection*{{Avoiding variable capture}}\label{avoiding_variable_capture} If the language in question contains variable [[bound variable|binders]], then there is a subtlety to substitution: if $t$ contains free variables that are bound in $P$, then we cannot simply textually substitute $t$ for $x$ and obtain an expression with the desired meaning. For instance, if $P$ is $\exists y (x + y = 1)$, and $t$ is the free variable $y$, then a literal interpretation of $P[t/x]$ would produce $\exists y (y + y = 1)$. But $P$ is true (universally in its free variables) if the variables have type $\mathbb{Z}$, while $\exists y (y + y = 1)$ is not. The free variable $y$ in $t$ has been ``captured'' by the binder $\exists y$ in $P$. We say that $t$ is \textbf{substitutable} for $x$ in $P$ if performing a literal textual substitution as above would not result in undesired variable capture. If $t$ is not substitutable for $x$ in $P$, then we can always replace $P$ by an [[alpha-equivalent]] expression in which $t$ \emph{is} substitutable for $x$. Since we often consider formulas only up to $\alpha$-equivalence anyway, one usually defines the notation ``$P[t/x]$'' to include an $\alpha$-conversion of $P$, if necessary, to make $t$ substitutable for $x$. In computer implementations of type theories, however, the issue of variable binding and capture is one of the trickiest things to get right. Performing $\alpha$-conversions is difficult and tedious, and other solutions exist, such as using [[de Brujin indices]] to represent bound variables. \hypertarget{as_an_admissible_rule}{}\subsubsection*{{As an admissible rule}}\label{as_an_admissible_rule} A general property of type theories (and other formal mathematics) is that \emph{substitution is an admissible rule}. Roughly, this means that if $P$ is an expression of some type, then so is the result $P[t/x]$ of substitution (as long as $t$ and $x$ have the same type). This is generally not a rule ``put into'' the theory, but rather a property one \emph{proves} about the theory; type theorists say that substitution is an [[admissible rule]] rather than a [[derivable rule]]. For instance, in the language of [[dependent type theory]] we can show that the following substitution rule is admissible: \begin{displaymath} \frac{\Gamma \vdash (t:A) \qquad (x:A) \vdash P \;type}{\Gamma \vdash P[t/x] \;type} \end{displaymath} Here ``admissibility'' means that if there exist derivations of $\Gamma \vdash (t:A)$ and $(x:A) \vdash P \;type$, then there also exists a derivation of $\Gamma \vdash P[t/x] \;type$. By contrast, saying that this is a derivable rule would mean that it can occur itself as \emph{part} of a derivation, rather than being a meta-statement \emph{about} derivations. The substition rule is closely related to the [[cut rule]], and admissibility of such rules is generally proven by [[cut elimination]]. \hypertarget{explicit_substitution}{}\subsection*{{Explicit substitution}}\label{explicit_substitution} An alternative approach to substitution is to make substitution part of the object language rather than the metalanguage. That is, the notation \begin{displaymath} P[t/x] \end{displaymath} is now actually itself a string of the language under consideration. One then needs reduction or equality rules describing the relationship of this string $P[t/x]$ to the result of actually substituting $t$ for $x$ as in the usual approach. See [[explicit substitution]] for more details. \hypertarget{CategoricalSemantics}{}\subsection*{{Categorical semantics}}\label{CategoricalSemantics} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} In the [[categorical semantics]] of [[type theory]]: \begin{itemize}% \item Recalling that [[terms]] are interpreted by [[morphisms]], substitution of a term into another term is interpreted by [[composition]] of the relevant morphisms. \item Recalling that [[propositions]] are interpreted by [[subobjects]], substitution of a term $t$ into a proposition $P$ is interpreted by [[pullback]] or [[inverse image]] of the subobject interpreting $P$ along the morphism interpreting $t$. \item Recalling that [[dependent types]] are interpreted by [[display maps]], substitution of a term $t$ into a dependent type $B$ is interpreted by [[pullback]] of the display map interpreting $B$ along the morphism interpreting $t$. \item Or else, since [[dependent types]] are also given by [[classifying morphisms]] into a [[type of types]], substitution corresponds to [[composition]] of these classifying morphisms with the given morphism. \end{itemize} In the third case, there is a [[coherence]] issue: syntactic substitution in the usual approach is strictly [[associativity|associative]], whereas pullback in a category is not. One way to deal with this is by using explicit substitution as described above. Another way is to strictify the category before modeling type theory; see \emph{[[categorical model of dependent types]]}. For literature see (\hyperlink{CurienGarnerHofmann}{Curien-Garner-Hofmann}, \hyperlink{LumsdaineWarren13}{Lumsdaine-Warren 13}). \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} Let $\mathcal{C}$ be a suitable ambient [[category]] in which we are [[categorical semantics|interpreting]] [[logic]]/[[type theory]]. Suppose $X$ and $Y$ are [[types]], hence interpreted as [[objects]] of $\mathcal{C}$. Then a [[term]] of [[function type]] $f : X \to Y$ is interpreted by a [[morphism]], going by the same symbols. Now a [[proposition]] about [[terms]] of [[type]] $Y$ \begin{displaymath} y : Y \vdash P(y) \end{displaymath} is interpreted as a [[object]] of the [[slice category]] $\mathcal{C}_{/Y}$, specifically as a [[truncated object of an (infinity,1)-category|(-1)-truncated]] object if it is to be a [[proposition]], hence by a [[monomorphism]] \begin{displaymath} \itexarray{ P \\ \downarrow \\ Y } \,. \end{displaymath} For instance if $\mathcal{C} =$ [[Set]] then this is the inclusion of the [[subset]] of elements of $Y$ on which $P$ is true. And generally we may write \begin{displaymath} P = \{y : Y | isInhab(P(y)) \} \,. \end{displaymath} Now finally the \textbf{substitution} of $f(x)$ for $y$ in $P$, hence the proposition \begin{displaymath} \itexarray{ P(f(-)) \\ \downarrow \\ X } \end{displaymath} is interpreted as the [[pullback]] \begin{displaymath} \itexarray{ P(f(-)) \coloneqq & f^* P &\to& P \\ & \downarrow && \downarrow \\ & X &\stackrel{f}{\to}& Y } \,. \end{displaymath} Notice that [[monomorphisms]] are preserved by pullback, so that this is indeed again the correct interpretation of a proposition. Specifically, if $X$ is the [[unit]] type it is interpreted as a [[terminal object]] of $\mathcal{C}$, and then the [[function]] $f$ is identified simply with a [[term]] $y_0 \coloneqq f(*)$. In this case the substitution is \emph{evaluation} of the proposition at $y_0$, the resulting monomorphism \begin{displaymath} \itexarray{ P(y_0) &\to& P \\ \downarrow && \downarrow \\ * &\stackrel{y_0}{\to}& Y } \end{displaymath} over the terminal object is a [[truth value]]: the truth value of $P$ at $y_0$. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include substitution natural deduction - table]] \begin{itemize}% \item [[context extension]] \item [[dependent product]], [[universal quantifier]] \item [[dependent sum]], [[existential quantifier]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The observation that substitution forms an [[adjoint pair]]/[[adjoint triple]] with [[quantifiers]] is due to \begin{itemize}% \item [[Bill Lawvere]], \emph{Adjointness in Foundations}, (\href{http://www.emis.de/journals/TAC/reprints/articles/16/tr16abs.html}{TAC}), Dialectica 23 (1969), 281-296 \end{itemize} and further developed in \begin{itemize}% \item [[Bill Lawvere]], \emph{Equality in hyperdoctrines and comprehension schema as an adjoint functor}, Proceedings of the AMS Symposium on Pure Mathematics XVII (1970), 1-14. \end{itemize} Exposition of the interpretation of substitution as pullback is in \begin{itemize}% \item [[Andrej Bauer]], \emph{\href{http://math.andrej.com/2012/09/28/substitution-is-pullback/}{Substitution is pullback}}, 2012 \end{itemize} The [[coherence]] issue involved in making this precise is discussed in \begin{itemize}% \item [[Pierre-Louis Curien]], [[Richard Garner]], [[Martin Hofmann]], \emph{Revisiting the categorical interpretation of dependent type theory} ([[CurienGarnerHofmann.pdf:file]]) \item [[Peter LeFanu Lumsdaine]], [[Michael Warren]], \emph{An overlooked coherence construction for dependent type theory}, CT2013 ([[LumsdaineWarren2013.pdf:file]]) \end{itemize} [[!redirects substitution]] [[!redirects substitutions]] [[!redirects variable substitution]] [[!redirects variable substitutions]] [[!redirects variable capture]] [[!redirects variable captures]] \end{document}