\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{substructure complete theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{model_theory}{}\paragraph*{{Model theory}}\label{model_theory} [[!include model theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{equivalence_with_quantifier_elimination}{Equivalence with quantifier elimination}\dotfill \pageref*{equivalence_with_quantifier_elimination} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{remarks}{Remarks}\dotfill \pageref*{remarks} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} One wants an equivalent and purely [[semantics|semantic]] characterization of [[quantifier elimination]]. A [[first-order theory|theory]] $T$ is substructure complete if after fixing a \emph{substructure}, the theory of the [[elementary class]] of all $T$-models into which that substructure embeds is \emph{complete}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A [[first-order theory]] $T$ in a language $\mathcal{L}$ is \textbf{substructure complete} if for any $M \in \mathbf{Mod}(T)$ and any $\mathcal{L}$-[[first-order structure|substructure]] $A \hookrightarrow M,$ the theory $T_{\mathsf{Diag}(A)}$ (expansion by $A$`s [[quantifier-free diagram]])---whose models are precisely those models $N \in \mathbf{Mod}(T)$ such that there exists an embedding of $\mathcal{L}$-structures $A \hookrightarrow N$---is complete. \end{defn} \hypertarget{equivalence_with_quantifier_elimination}{}\subsection*{{Equivalence with quantifier elimination}}\label{equivalence_with_quantifier_elimination} \begin{theorem} \label{}\hypertarget{}{} $T$ [[quantifier elimination|eliminates quantifiers]] if and only if $T$ is substructure-complete. \end{theorem} \begin{proof} $(\Rightarrow)$ Suppose $T$ eliminates quantifiers. Fix a substructure $A$. Since quantifier-free sentences are automatically transferred by embeddings (whereas without the additional property of quantifier-freeness, we would require the additional property that an embedding be [[elementary embedding|elementary]]), then for any two models $M, N \in \mathbf{Mod}(T)$ \begin{displaymath} M \leftarrow A \rightarrow N \end{displaymath} containing $A$, we have that for every sentence $\varphi$ satisfied by $N$, $T \models \varphi \leftrightarrow \psi$ where $\psi$ is quantifier-free. Therefore, $\psi$ transfers to $A$ and $M$, so $M \models \varphi$ as well, and vice-versa. $(\Leftarrow)$ Now suppose $T$ is substructure complete. Fix $\varphi(x)$ an $\mathcal{L}$-formula. Consider the [[type (in model theory)|type]] $\Phi$ of its quantifier-free consequences,i .e. \begin{displaymath} \Phi(x) \overset{\operatorname{df}}{=} \{\varphi^*(x) \text{ quantifier-free } \operatorname{|} T \models \varphi \implies \varphi^*\}. \end{displaymath} (This thing is like the quantifier-free principal ultrafilter on $\varphi$ in the Boolean algebra of definable sets.) Let $d_1, \dots, d_n$ be distinct new constant symbols. Write $d = \vec{d} = (d_1, \dots, d_n)$. Claim: $T \cup \Phi(d) \models \varphi(d).$ (This claim says, roughly, that knowing the principal ultrafilter of quantifier-free definable sets containing $\varphi(x)$ suffices to pin down $\varphi(x)$. After establishing the claim, it will be easy to improve it to full quantifier elimination.) Proof of claim: suppose towards a contradiction that there exists an $A \models T \cup \Phi(d) \cup \{\not \varphi(d)\}.$ (This is a structure in the language $\mathcal{L}$ of $T$, expanded by $d$.) Let $d^A$ be the interpretation of the new constants $d$ in $A$. Consider the finitely-generated $\mathcal{L}$-substructure of $A$ around $d^A$: \begin{displaymath} C \overset{\operatorname{df}}{=} \langle d^A \rangle_{\mathcal{L}}. \end{displaymath} Subclaim: $T \cup \{\varphi(d^A)\} \cup \mathsf{Diag}(C)$ \emph{is} satisfiable. (This subclaim amounts to saying that while $A$ models $\neg \varphi(d^A)$, we can find another model $B \models T$, embedding $C$, such that $B$ \emph{does} models $\varphi(d^A)$.) Proof of subclaim: this will be a standard [[compactness theorem|compactness argument]]. Suppose not; by compactness there exist finitely many sentences $\theta_1, \dots, \theta_m \in \mathsf{Diag}(C)$ such that \begin{displaymath} T \cup \{\varphi(d^A)\} \cup \{\theta_i\}_{1 \leq i \leq m} \end{displaymath} is not satisfiable. By the definition of [[quantifier-free diagram]], we can write $\theta_i = \theta'_i(d^A)$, where $\theta'_i$ is a quantifier-free $\mathcal{L}$-formula. Therefore, \begin{displaymath} T \cup \{\varphi(d^A), \theta'_0(d^A), \theta'_1(d^A), \dots, \theta_m'(d^A)\} \end{displaymath} is not satisfiable, where (remembering that $d^A$ is now just a tuple of constant symbols) $\theta'_0(x)$ specifies that all the entries of $x$ are distinct. Therefore, \begin{displaymath} T \models \varphi(d^A) \rightarrow \bigvee_{i = 0}^m \neg \theta'_i(d^A). \end{displaymath} Since there are no constraints on the constant symbols $d^A$ and $\theta'_0$ specifies that they are all distinct, we may generalize them, so that \begin{displaymath} T \models \forall x \left( \varphi(x) \to \bigvee_{i = 0}^m \neg \theta'_i(x) \right) \end{displaymath} hence \begin{displaymath} \bigvee_{i = 0}^m \neg \theta'_i(x) \in \Phi(x). \end{displaymath} Now, by assumption, $A \models \Phi(d)$. This means in particular that $A \models \bigvee_{i = 0}^m \neg \theta'_i(d^A).$ Since that disjunction is quantifier-free, it transfers down to $C$. Therefore, there is some $0 \leq j \leq m$ such that $C \models \neg \theta'_j(d^A).$ Since the $d^A$ were distinct when we obtained $A$ (from which we obtained $C$), we can rule out $j \neq 0$. But for each $j = 1, \dots, m$, $\theta_j = \theta'_j(d^A) \in \mathsf{Diag}(C)$. This is a contradiction. This proves the subclaim. Now we proceed with proving the claim. Let $\mathbf{B} \models T \cup \{\varphi(d^A)\} \cup \mathsf{Diag}(C).$ Then: \begin{displaymath} A \models \neg \varphi(d^A), \text{ and } B \models \varphi(d^A), \end{displaymath} which contradicts substructure completeness over $C$. This proves the claim. Now we proceed with proving the theorem. With the claim in hand, the [[compactness theorem]] tells us that the entailment $T \cup \Phi(x) \models \varphi(d)$ is finitely supported, so that there are finitely many $\varphi^*_1, \dots, \varphi^*_m \in \Phi(x)$ such that \begin{displaymath} T \cup \{\varphi_i^*(d)\}_{i \leq m} \models \varphi(d). \end{displaymath} Write $\varphi^* \overset{\operatorname{df}}{=} \bigvee_{i \leq m} \varphi_i^*.$ Again, we generalize the constants $d$, obtaining \begin{displaymath} T \models \forall x \left( \varphi \leftrightarrows \varphi^* \right). \end{displaymath} Since the $\varphi^*_i$ are all quantifier-free, and $\varphi$ was arbitrary, we have proved that $T$ eliminates quantifiers. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item By the above theorem, any theory which [[quantifier elimination|eliminates quantifiers]] is substructure complete. \item So e.g. the [[countable random graph]], the theory [[ACF]] of algebraically closed fields, the theory [[DLO]] of dense linear orders\ldots{} \end{itemize} \hypertarget{remarks}{}\subsection*{{Remarks}}\label{remarks} \begin{itemize}% \item The analogous (and weaker) property where one asks that the theory of the elementary class of $T$-models embedding a fixed $T$-model is complete is called [[model complete theory | model completeness]]. \item Of course, substructure-completeness implies model-completeness. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[quantifier elimination]] \item [[model complete theory]] \item [[existentially closed model]] \item [[diagram of a first-order structure]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Dave Marker, \emph{Model theory: an introduction}, theorem 3.14 \end{itemize} [[!redirects substructure-complete]] [[!redirects substructure completeness]] [[!redirects substructure-completeness]] [[!redirects substructure complete theories]] [[!redirects substructure-complete theories]] [[!redirects substructure complete]] \end{document}