\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{super Cartesian space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{supergeometry}{}\paragraph*{{Supergeometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{de_rham_complex_of_differential_forms}{De Rham complex of differential forms}\dotfill \pageref*{de_rham_complex_of_differential_forms} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The analog of a [[Cartesian space]] in [[supergeometry]], a [[supermanifold]] with a single canonical [[coordinate chart]]. For suitable even|odd dimension this is naturally equipped with the structure of a [[supergroup]] that makes it a [[super-translation group]]. For Minkowski signature this is [[super-Minkowski spacetime]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For $p,q \in \mathbb{N}$, let $\mathbb{R}^{p|q}$ the \emph{super Cartesian space} of [[dimension]]\_ $(p|q)$. This is the [[supermanifold]] defined by the fact that its [[algebra of functions]] is freely generated, as a [[smooth superalgebra]] by even-graded [[coordinate]]-functions $\langle \{x^a\}_{1}^p$ and odd-graded coordinate function $\{ \theta^\alpha\}_{\alpha= 1}^q$. Equivalently this is the [[tensor product]] of the [[smooth functions]] on $\mathbb{R}^p$ with the real [[Grassmann algebra]] on $q$ generators: \begin{displaymath} \begin{aligned} C^\infty(\mathbb{R}^{p|q}) & \coloneqq \langle \{x^a\}_{1}^p, \{ \theta^\alpha\}_{\alpha= 1}^q \rangle \\ & = C^\infty(\mathbb{R}^p)\otimes_{\mathbb{R}} \wedge^\bullet \mathbb{R}^q \end{aligned} \,. \end{displaymath} \hypertarget{details}{}\subsection*{{Details}}\label{details} The following is taken from \emph{[[geometry of physics -- supergeometry]]}, see there for more: \begin{defn} \label{SuperCartesianSpace}\hypertarget{SuperCartesianSpace}{} For $q\in \mathbb{N}$, the real [[Grassmann algebra]] \begin{displaymath} C^\infty(\mathbb{R}^{0|q}) \coloneqq \wedge^\bullet \langle \theta^1, \cdots, \theta^q\rangle \end{displaymath} is the $\mathbb{R}$-algebra [[free functor|freely]] generated from $q$ generators $\{\theta^i\}_{i = 1}^q$ subject to the relations \begin{displaymath} \theta^i \theta^j = - \theta^j \theta^i \end{displaymath} for all $i,j \in \{1,\cdots, q\}$. For $p,q \in \mathbb{N}$, the [[super-Cartesian space]] $\mathbb{R}^{p|q}$ is the [[formal dual]] of the [[supercommutative superalgebra]] written $\mathcal{O}(\mathbb{R}^{p\vert q})$ or $C^\infty(\mathbb{R}^{p|q})$ whose underlying $\mathbb{Z}/2\mathbb{Z}$-[[graded vector space]] is \begin{displaymath} C^\infty(\mathbb{R}^{p|q}) \coloneqq C^\infty(\mathbb{R}^p) \otimes_{\mathbb{R}} \wedge^\bullet\langle\theta^1, \cdots, \theta^q\rangle \end{displaymath} with the product given by the relations \begin{displaymath} \begin{aligned} \left( f \theta^{i_1}\cdots \theta^{i_k} \right) \left( g \theta^{j_1}\cdots \theta^{j_l} \right) & = f \cdot g \; \theta^{i_1}\cdots \theta^{i_k} \theta^{j_1}\cdots \theta^{j_l} \\ & = (-1)^{k l} g\cdot f \; \theta^{j_1}\cdots \theta^{j_l} \theta^{i_1}\cdots \theta^{i_k} \end{aligned} \end{displaymath} where $f \cdot g$ is the ordinary pointwise product of [[smooth functions]]. Write \begin{displaymath} SuperCartSp \hookrightarrow sCAlg_{\mathbb{R}}^{op} \end{displaymath} for the [[full subcategory]] of the [[opposite category]] of [[commutative superalgebras]] on those of this form. We write $\mathbb{R}^{p|q} \in SuperCartSp$ for the [[formal dual]] of $C^\infty(\mathbb{R}^{p|q})$. \end{defn} We write \begin{displaymath} CartSp \hookrightarrow SuperCartSp \end{displaymath} for the [[full subcategory]] on ordinary [[Cartesian spaces]] with [[smooth functions]] between them. These are the ``abstract coordinate charts'' from the discussion at \emph{[[geometry of physics -- smooth sets]]}, and so we are evidently entitled to think of the objects in $SuperCartSp$ as \textbf{abstract super coordinate systems} and to develop a geometry induced from these. Recall the two magic algebraic properties of [[smooth functions]] that make the above algebraic description of [[differential geometry]] work: \begin{enumerate}% \item (\textbf{[[embedding of smooth manifolds into formal duals of R-algebras]]}) The functor that assigns [[algebra of functions|algebras of]] [[smooth function]] of [[smooth manifolds]] \begin{displaymath} C^\infty(-) \;\colon\; SmthMfd \hookrightarrow CAlg_{\mathbb{R}}^{op} \end{displaymath} is [[fully faithful functor|fully faithful]]. \item (\textbf{[[smooth Serre-Swan theorem]]}) The functor that assigns smooth [[sections]] of smooth [[vector bundles]] of [[finite number|finite]] [[rank]] \begin{displaymath} \Gamma_X(-) \;\colon\; SmthVectBund_{/X} \hookrightarrow C^\infty(X) Mod \end{displaymath} is [[fully faithful functor|fully faithful]] (its [[essential image]] being the [[finitely generated object|finitely generated]] [[projective modules]] over the $\mathbb{R}$-[[algebra of functions|algebra of]] [[smooth function]]). \end{enumerate} There is a third such magic algebraic property of smooth functions, which plays a role now: \begin{defn} \label{DerivationsOfSmoothFunctions}\hypertarget{DerivationsOfSmoothFunctions}{} \textbf{([[derivations of smooth functions are vector fields]])} Let $X$ be a [[smooth manifold]]. Write \begin{displaymath} der_X \;\colon\; \Gamma(T X) \longrightarrow Der(C^\infty(X)) \end{displaymath} for the function that sends a smooth [[vector field]] $v \in \Gamma(T X)$ to the [[derivation]] of the [[algebra of functions|algebra of]] [[smooth functions]] on $X$ given by forming [[derivatives]]: $der_X(v)(f) \coloneqq v(f)$. This is a [[derivation]] by the [[chain rule]]. Then this function is a [[bijection]], hence every [[derivation]] of $C^\infty(X) \in CAlg_{\mathbb{R}}$ comes from [[differentiation]] along some smooth vector field, which is uniquely defined thereby. \end{defn} \begin{proof} By the existence of [[partitions of unity]] we may restrict to the situation where $X = \mathbb{R}^n$ is a [[Cartesian space]]. By the [[Hadamard lemma]] every [[smooth function]] $f \in C^\infty(\mathbb{R}^n)$ may be written as \begin{displaymath} f(x) = f(0) + \sum_i x_i g_i(x) \end{displaymath} for [[smooth functions]] $\{g_i \in C^\infty(X)\}$ with $g_i(0) = \frac{\partial f}{\partial x_i}(0)$. Since any derivation $\delta : C^\infty(X) \to C^\infty(X)$ by definition satisfies the Leibniz rule, it follows that \begin{displaymath} \delta(f)(0) = \sum_i \delta(x_i) \frac{\partial f}{\partial x_i}(0) \,. \end{displaymath} Similarly, by translation, at all other points. Therefore $\delta$ is already fixed by its action of the coordinate functions $\{x_i \in C^\infty(X)\}$. Let $v_\delta \in T \mathbb{R}^n$ be the [[vector field]] \begin{displaymath} v_\delta \coloneqq \sum_i \delta(x_i) \frac{\partial}{\partial x_i} \end{displaymath} then it follows that $\delta$ is the derivation coming from $v_\delta$ under $\Gamma_X(T X) \to Der(C^\infty(X))$. \end{proof} Recall further from \emph{[[geometry of physics -- superalgebra]]} that the category of [[supercommutative superalgebras]] is related to that of ordinary [[commutative algebras]] over $\mathbb{R}$ by an [[adjoint cylinder]] (\href{geometry+of+physics+--+superalgebra#InclusionOfCAlgIntosCAlg}{this prop.}): \begin{prop} \label{AdjointCylinderOnSuperAffines}\hypertarget{AdjointCylinderOnSuperAffines}{} The canonical inclusion of [[commutative algebras]] into [[supercommutative superalgebra]] is part of an [[adjoint triple]] of the form \begin{displaymath} CAlg_k \underoverset {\underset{(-)_{even}}{\longleftarrow}} {\overset{(-)/(-)_{odd}}{\longleftarrow}} {\hookrightarrow} sCAlg_k \,. \end{displaymath} The [[formal dual]] of this statement is that [[affine superschemes]] are related to ordinary [[affine schemes]] over $\mathbb{R}$ by an [[adjoint cylinder]] of this form \begin{displaymath} Aff(Vect_k) \underoverset {\underset { \phantom{AA} \overset {\phantom{A}} {\overset{\rightsquigarrow}{(-)}} \phantom{AA} } {\longleftarrow} } {\overset { \phantom{AA} \underset {\phantom{A}} { \overset{\rightrightarrows}{(-)} } \phantom{AA} } {\longleftarrow} } {\hookrightarrow} Aff(sVect_k) \,. \end{displaymath} (Beware that $\overset{\rightsquigarrow}{(-)}$ is the formal dual of $(-)/(-)_{odd}$ while $\overset{\rightrightarrows}{(-)}$ is the formal dual of $(-)_{even}$. That they change position in the diagrams is because we always draw [[left adjoints]] on top of [[right adjoints]] and the handedness of [[adjoints]] changes as we pass to [[opposite categories]].) \end{prop} The notation in prop. \ref{AdjointCylinderOnSuperAffines} is to serve as a convenient mnemonic for the nature of these functors: In a [[Feynman diagram]] \begin{enumerate}% \item a single [[fermion]] is denoted by a solid arrow ``$\to$'' and the functor $\overset{\rightrightarrows}{(-)}$ produces a space whose [[algebra of functions]] is generated over smooth functions by the product of two fermionic functions \item a single [[boson]] is denoted by a wiggly arrow $\rightsquigarrow$ and the functor denoted by this symbol produces a spaces whose [[algebra of functions]] contains only the bosonic smooth functions, no odd-graded functions. \end{enumerate} This highlights an important point: while the image of a [[super Cartesian space]] under $\rightsquigarrow$ is an ordinary [[Cartesian space]] \begin{displaymath} \overset{\rightsquigarrow}{\mathbb{R}^{p\vert q}} \simeq \mathbb{R}^p \end{displaymath} its image under $\overset{\rightrightarrows}{(-)}$ is a bosonic space, but not an ordinary manifold. For instance \begin{displaymath} \begin{aligned} \mathcal{O}\left( \overset{\rightrightarrows}{\mathbb{R}^{0\vert 2}}\right) & = \mathcal{O}(\mathbb{R}^{0\vert 2})_{even} \\ & = (\wedge^\bullet(\mathbb{R}^2)^\ast)_{even} \\ &= \left\{a_0 + a_1 \, \theta_1 + a_2 \, \theta_2 + a_{12} \theta_1 \theta_2 \,\vert a_\bullet \in \mathbb{R}\,\right\}_{even} \\ &= \left\{a_0 + a_{12} \theta_1 \theta_2 \,\vert a_{12} \in \mathbb{R}\,\right\} \\ &= \mathbb{R}[\epsilon]/(\epsilon^2 = 0) \end{aligned} \end{displaymath} where in the last line we renamed $\theta_1 \theta_2$ to $\epsilon$. This algebra $\mathbb{R}[\epsilon]/(\epsilon^2)$ is known as the \textbf{[[algebra of dual numbers]]} over $\mathbb{R}$. It is to be thouhgt of as the [[algebra of functions]] on a bosonic but [[infinitesimally thickened point]], a 1-dimensional neighbourhood of a point which is ``so very small'' that the canonical [[coordinate]] function $\epsilon$ on it takes values ``so tiny'' that its square, which is bound to be even tinier, is actually indistinguishable from zero. In generalization of this we make the following definitions \begin{defn} \label{FormalCartSp}\hypertarget{FormalCartSp}{} Write \begin{displaymath} InfPoint \hookrightarrow CAlg_{\mathbb{R}}^{op} \end{displaymath} for the [[full subcategory]] of the [[opposite category]] of [[commutative algebras]] over $\mathbb{R}$ on [[formal duals]] of [[commutative algebras]] over the [[real numbers]] of the form $\mathbb{R}\oplus V$ with $V$ a [[nilpotent ideal]] of [[finite number|finite]]-[[dimension]] over $\mathbb{R}$. We call this the category of \emph{[[infinitesimally thickened points]]}. In [[synthetic differential geometry]] these algebras ar called \textbf{[[Weil algebra]]}, while in [[algebraic geometry]] they are known as \textbf{local [[Artin algebras]]} over $\mathbb{R}$. Write moreover \begin{displaymath} FormalCartSp \coloneqq CartSp \rtimes InfPoint \hookrightarrow CAlg_{\mathbb{R}}^{op} \end{displaymath} for the [[full subcategory]] on [[formal duals]] of those algebras which are [[tensor products]] of commutative $\mathbb{R}$-algebras of the form \begin{displaymath} C^\infty(\mathbb{R}^n) \otimes C^\infty(D) \end{displaymath} of algebras $C^\infty(\mathbb{R}^p)$ of [[smooth functions]] $\mathbb{R}^n$ with algebras corresponding to infinitesimally thickened points $D$ as above. \end{defn} This kind of construction is traditionally more familiar from the theory of [[formal schemes]], but the same kind of general abstract theory goes through in the context of [[differential geometry]], a point of view known as \emph{[[synthetic differential geometry]]}. The crucial property of [[infinitesimally thickened points]] (def. \ref{FormalCartSp}) is that they co-represent [[tangent vectors]] and [[jets]]: \begin{example} \label{}\hypertarget{}{} Write $\mathbb{D}^1 = Spec(\mathbb{R}[\epsilon]/(\epsilon^2))$ for the [[formal dual]] of the [[algebra of dual numbers]]. Then morphisms \begin{displaymath} \mathbb{R}^n \times \mathbb{D}\longrightarrow \mathbb{R}^n \end{displaymath} which are the identity after restriction along $\mathbb{R}^n \to \mathbb{R}^n \times \mathbb{D}$, are equivalently algebra homomorphisms of the form \begin{displaymath} (C^\infty(\mathbb{R}^n) \oplus \epsilon C^\infty(\mathbb{R}^n)) \longleftarrow C^\infty(\mathbb{R}^n) \end{displaymath} which are the identity modulo $\epsilon$. Such a morphism has to take any function $f \in C^\infty(\mathbb{R}^n)$ to \begin{displaymath} f + (\partial f) \epsilon \end{displaymath} for some smooth function $(\partial f) \in C^\infty(\mathbb{R}^n)$. The condition that this assignment makes an algebra homomorphism is equivalent to the statement that for all $f_1,f_2 \in C^\infty(\mathbb{R}^n)$ \begin{displaymath} (f_1 f_2 + (\partial (f_1 f_2))\epsilon ) = (f_1 + (\partial f_1) \epsilon) (f_2 + (\partial f_2) \epsilon) \,. \end{displaymath} Multiplying this out and using that $\epsilon^2 = 0$ this in turn is equivalent to \begin{displaymath} \partial(f_1 f_2) = (\partial f_1) f_2 + f_1 (\partial f_2) \,. \end{displaymath} This in turn means equivalently that $\partial\colon C^\infty(\mathbb{R}^n)\to C^\infty(\mathbb{R}^n)$ is a [[derivation]]. But [[derivations of smooth functions are vector fields]] (prop. \ref{DerivationsOfSmoothFunctions}). In particular one finds that maps \begin{displaymath} \mathbb{D} \longrightarrow \mathbb{R}^n \end{displaymath} are equivalently single [[tangent vectors]], hence for every $\mathbb{R}^n$ there is a [[natural bijection]] \begin{displaymath} Hom_{FormalCartSp}(\mathbb{D}^1, \mathbb{R}^n) \simeq \underset{\text{underlying} \atop \text{set}}{\underbrace{T \mathbb{R}^n}} \end{displaymath} between the [[hom-set]] from the formal dual of the [[ring of dual numbers]] and the set of [[tangent vectors]]. \end{example} \begin{prop} \label{CartSpCoreflectiveInclusion}\hypertarget{CartSpCoreflectiveInclusion}{} The canonical inclusion $i$ of the category of ordinary [[Cartesian spaces]] into that of [[formal manifold|formal]] [[Cartesian spaces]] has a [[left adjoint]] $\Re$ \begin{displaymath} CartSp \underoverset {\underset{\Re}{\longleftarrow}} {\overset{i}{\hookrightarrow}} {\phantom{AAAA}} FormalCartSp \end{displaymath} given by \begin{displaymath} \Re(\mathbb{R}^n \times \mathbb{D}) \coloneqq \mathbb{R}^n \,. \end{displaymath} Hence exhibits $CartSp$ as a [[coreflective subcategory]] of that of formal cartesian spaces. We say that $\mathbb{R}^n$ is the \textbf{[[reduced scheme]]} of $\mathbb{R}^n \times \mathbb{D}$. \end{prop} \begin{proof} We check the [[natural isomorphism]] on [[hom-sets]] that characterizes a pair of [[adjoint functors]]: By definition, a morphism of the form \begin{displaymath} f \;\colon\; i(\mathbb{R}^{n_1}) \longrightarrow \mathbb{R}^{n_2} \times \mathbb{D} \end{displaymath} is equivalently a [[homomorphism]] of [[commutative algebras]] of the form \begin{displaymath} f^\ast \;\colon\; C^\infty(\mathbb{R}^{n_1}) \longleftarrow C^\infty(\mathbb{R}^{n_2}) \otimes_{\mathbb{R}} (\mathbb{R} \oplus V) \end{displaymath} where all elements $v \in V$ are nilpotent, in that there exists $n_v \in \mathbb{N}$ such that $(v)^{n_v} = 0$. Every algebra homomorphism needs to preserve this equation, and hence needs to send nilpotent elements to nilpotent elements. But the only nilpotent element in the ordinary function algebra $C^\infty(\mathbb{R}^n)$ is the zero-function, and so it follows that the above homomorphism has to vanish on all of $V$, hence has to factor (necessarily uniquely) through a homomorphism of the form \begin{displaymath} \tilde f^\ast \;\colon\; C^\infty(\mathbb{R}^{n_1}) \longleftarrow C^\infty(\mathbb{R}^{n_2}) \,. \end{displaymath} This is dually a morphism of the form \begin{displaymath} \tilde f \;\colon\; \mathbb{R}^{n_1} \longrightarrow \mathbb{R}^{n_2} \end{displaymath} in $CartSp$. This establishes a natural bijection $f \leftrightarrow \tilde f$. \end{proof} The above discussion following prop. \ref{AdjointCylinderOnSuperAffines} means that in passing to commutative superalgebras there are \emph{two} stages of generalizations of plain differential geometry involved: \begin{enumerate}% \item [[Cartesian spaces]] are generalized to [[formal manifold|formal]] [[Cartesian spaces]]; \item [[formal manifold|formal]] [[Cartesian spaces]] are further generalized to [[super formal Cartesian spaces]]. \end{enumerate} In order to make this explicit, it is convenient to introduce the following slight generalization of [[super Cartesian spaces]] (def. \ref{SuperCartesianSpace}), which are simply [[Cartesian products]] of ordinary [[Cartesian spaces]] with an [[infinitesimally thickened point]] that may have both even and odd graded elements in its [[algebra of functions]]. \begin{defn} \label{SuperFormalCartSp}\hypertarget{SuperFormalCartSp}{} Write \begin{displaymath} SuperFormalCartSp \hookrightarrow sCAlg_{\mathbb{R}}^{op} \end{displaymath} for the [[full subcategory]] of that of the [[opposite category]] of [[supercommutative superalgebras]] on whose of the form \begin{displaymath} C^\infty(\mathbb{R}^p) \otimes_{\mathbb{R}} (\mathbb{R} \oplus V) \end{displaymath} where $V$ is a [[nilpotent ideal]] of [[finite number|finite]] [[dimension]] over $\mathbb{R}$. \end{defn} One place where such super formal Cartesian spaces are made explicit is in \hyperlink{KonechnySchwarz97}{Konechny-Schwarz 97} In conclusion we have the following situation: \begin{prop} \label{}\hypertarget{}{} The [[coreflective subcategory]] inclusion of [[Cartesian spaces]] into [[formal manifold|formal]] [[Cartesian spaces]] from prop. \ref{CartSpCoreflectiveInclusion} and the coreflective as we all [[reflective subcategory]] inclusion\newline of affine schemes into [[affine superschemes]] from prop. \ref{AdjointCylinderOnSuperAffines} combine to give the following system of [[adjoint functors]] on our local model spaces \begin{displaymath} \itexarray{ {\text{} \atop {\text{differential} \atop \text{geometry}}} && {\text{formal} \atop {\text{differential} \atop {geometry}}} && {\text{super} \atop {\text{differential} \atop \text{geometry}}} \\ \\ CartSp & \underoverset {\underset{\Re}{\longleftarrow}} {\overset{}{\hookrightarrow}} {} & FormalCartSp & \underoverset {\underset { \phantom{AA} \overset {\phantom{A}} {\overset{\rightsquigarrow}{(-)}} \phantom{AA} } {\longleftarrow} } {\overset { \phantom{AA} \underset {\phantom{A}} { \overset{\rightrightarrows}{(-)} } \phantom{AA} } {\longleftarrow} } {\hookrightarrow} & SuperFormalCartSp } \,. \end{displaymath} \end{prop} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[superpoint]], [[odd line]] \item [[super Minkowski spacetime]] \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{de_rham_complex_of_differential_forms}{}\subsubsection*{{De Rham complex of differential forms}}\label{de_rham_complex_of_differential_forms} We discuss the [[de Rham complex]] of [[super differential forms]] on a super Cartesian space. (See also at \emph{[[signs in supergeometry]]}.) Accordingly, by the discussion at \emph{[[Kähler forms]]}, the [[de Rham complex]] of [[super differential forms]] on $\mathbb{R}^{p|q}$ is freely generated as a super-[[module]] over the [[smooth superalgebra]] $C^\infty(\mathbb{R}^{p|q})$ by expressions of the form $\mathbf{d}x^{a_1} \wedge \cdots \wedge \mathbf{d}x^{a_k} \wedge \mathbf{d}\theta^{\alpha_1} \wedge \cdots \wedge \mathbf{d}\theta^{\alpha_l}$. \begin{displaymath} \Omega^\bullet(\mathbb{R}^{p|q}) = C^\infty(\mathbb{R}^{p|q}) \left[ \left\{ \mathbf{d}x^{a_1} \wedge \cdots \wedge \mathbf{d}x^{a_k} \wedge \mathbf{d}\theta^{\alpha_1} \wedge \cdots \wedge \mathbf{d}\theta^{\alpha_l} \right\} \right] \,. \end{displaymath} This [[de Rham complex]] now carries the structure of a \begin{itemize}% \item differential graded-commutative graded commutative superalgebra \end{itemize} which should be thought of as bracketet as follows \begin{itemize}% \item differential graded-commutative graded (commutative superalgebra). \end{itemize} This means in effect that elements of $\Omega^\bullet(\mathbb{R}^{p|q})$ carry a $\mathbb{Z} \times \mathbb{Z}_2$-[[graded object|grading]], where we may say that \begin{itemize}% \item $\mathbb{Z}$ corresponds to the ``cohomological grading''; \item $\mathbb{Z}_2$ corresponds to the super-grading. \end{itemize} We write \begin{displaymath} (n,\sigma)\in \mathbb{Z} \times \mathbb{Z}_2 \end{displaymath} for elements in this grading group. In this notation the grading of the elements in $\Omega^\bullet(\mathbb{R}^{p|q})$ is all induced by the fact that the de Rham differential $\mathbf{d}$ itself is a [[derivation]] of degree $(1,even)$. \begin{tabular}{l|l} generator&bi-degree\\ \hline $x^a$&(0,even)\\ $\theta^\alpha$&(0,odd)\\ $\mathbf{d}$&(1,even)\\ \end{tabular} Here the last line means that we have \begin{tabular}{l|l} generator&bi-degree\\ \hline $x^a$&(0,even)\\ $\theta^\alpha$&(0,odd)\\ $\mathbf{d}x^a$&(1,even)\\ $\mathbf{d}\theta^\alpha$&(1,odd)\\ \end{tabular} The formula for the ``cohomologically- and super-graded commutativity'' in $\Omega^\bullet(\mathbb{R}^{p|q})$ is \begin{displaymath} \alpha \wedge \beta = \; (- 1)^{n_\alpha n_\beta + \sigma_\alpha \sigma_\beta} \; \beta \wedge \alpha \end{displaymath} for all $\alpha, \beta \in \Omega^\bullet(\mathbb{R}^{p|q})$ of homogeneous $\mathbb{Z}\times \mathbb{Z}_2$-degree. Hence there are \emph{two} contributions to the sign picked up when exchanging two super-differential forms in the wedge product: \begin{enumerate}% \item there is a ``cohomological sign'' which for commuting a $p_1$-forms past a $p_2$-form is $(-1)^{p_1 p_2}$; \item in addition there is a ``super-grading'' sich which for commuting a $\sigma_1$-graded coordinate function past a $\sigma_2$-graded coordinate function (possibly under the de Rham differential) is $(-1)^{\sigma_1 \sigma_2}$. \end{enumerate} Some examples: \begin{displaymath} x^{a_1} (\mathbf{d}x^{a_2}) = + (\mathbf{d}x^{a_2}) x^{a_1} \end{displaymath} \begin{displaymath} \theta^\alpha (\mathbf{d}x^a) = + (\mathbf{d}x^a) \theta^\alpha \end{displaymath} \begin{displaymath} \theta^{\alpha_1} (\mathbf{d}\theta^{\alpha_2}) = - (\mathbf{d}\theta^{\alpha_2}) \theta^{\alpha_1} \end{displaymath} \begin{displaymath} \mathbf{d}x^{a_1} \wedge \mathbf{d} x^{a_2} = - \mathbf{d} x^{a_2} \wedge \mathbf{d} x^{a_1} \end{displaymath} \begin{displaymath} \mathbf{d}x^a \wedge \mathbf{d} \theta^{\alpha} = - \mathbf{d}\theta^{\alpha} \wedge \mathbf{d} x^a \end{displaymath} \begin{displaymath} \mathbf{d}\theta^{\alpha_1} \wedge \mathbf{d} \theta^{\alpha_2} = + \mathbf{d}\theta^{\alpha_2} \wedge \mathbf{d} \theta^{\alpha_1} \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Euclidean space]] \item [[Euclidean G-space]] \end{itemize} [[!include geometries of physics -- table]] \begin{itemize}% \item [[super-Cartan geometry]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Anatoly Konechny and [[Albert Schwarz]], \emph{On $(k \oplus l|q)$-dimensional supermanifolds} in \emph{Supersymmetry and Quantum Field Theory} ([[Dmitry Volkov]] memorial volume) Springer-Verlag, 1998, Lecture Notes in Physics, 509 , J. Wess and V. Akulov (editors)(\href{http://arxiv.org/abs/hep-th/9706003}{arXiv:hep-th/9706003}) \emph{Theory of $(k \oplus l|q)$-dimensional supermanifolds} Sel. math., New ser. 6 (2000) 471 - 486 \end{itemize} [[!redirects super Cartesian spaces]] [[!redirects Cartesian superspace]] [[!redirects Cartesian superspaces]] [[!redirects super cartesian space]] [[!redirects super cartesian spaces]] [[!redirects super-Cartesian space]] [[!redirects super Euclidean space]] [[!redirects super Euclidean spaces]] [[!redirects super-Euclidean space]] [[!redirects super-Euclidean spaces]] [[!redirects super formal Cartesian space]] [[!redirects super formal Cartesian spaces]] [[!redirects SuperCartSp]] [[!redirects SuperFormalCartSp]] [[!redirects SuperFormalCartSpace]] \end{document}