\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{super Euclidean group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{details}{Details}\dotfill \pageref*{details} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{}{$d = 1$}\dotfill \pageref*{} \linebreak \noindent\hyperlink{_2}{$d = 2$}\dotfill \pageref*{_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The ordinary [[Euclidean group]] of $\mathbb{R}^n$ is the group generated from the rigid translation action of $\mathbb{R}^n$ on itself and rotations about the origin. The \emph{super Euclidean group} is analogously the [[supergroup]] of translations and rotations of the [[supermanifold]] $\mathbb{R}^{p|q}$. Its [[super Lie algebra]] should be the [[super Poincare Lie algebra]] (up to the signature of the metric). \hypertarget{details}{}\subsection*{{Details}}\label{details} \begin{quote}% \textbf{incomplete} for the moment, to be finished off tomorrow \end{quote} The following description of the super Euclidean group (once it is finished, and polished) is due to [[Stephan Stolz]] and [[Peter Teichner]]. The data needed to define the super Euclidean group is \begin{enumerate}% \item $V$ a $d$-dimensional inner product space \item a [[spinor representation]] $\Delta^*$ of $Spin(V)$ \item a $Spin(V)$-equivariant map \begin{displaymath} \Gamma : \Delta^* \otimes_{\mathbb{C}} \Delta^* \to V \otimes_{\mathbb{R}} \mathbb{C} \end{displaymath} \end{enumerate} where $Spin(V)$ is the [[Spin group]] (see [[Clifford algebra]] for the moment). Here is the construction of $Eucl(\mathbb{R}^{d|\delta})$ for \begin{itemize}% \item $d = dim_{\mathbb{R}} V$ \end{itemize} \textbf{remark} $\delta$ is a multiple of $2^{[\frac{d-1}{2}]}$ set \begin{displaymath} X = \Pi \left( \itexarray{ V \times \Delta^* \\ \downarrow \\ V} \right) = V \times \Pi \Delta^* \end{displaymath} is a [[complex supermanifold]] of dimension $(d|\delta)$ \begin{displaymath} C^\infty(V \times \Pi \Delta^*) = C^\infty(V) \otimes \wedge^\bullet \Delta = C^\infty(V, \wedge^\bullet(\Delta)) \end{displaymath} for $\delta = 1$ this is \begin{displaymath} \cdots = C^\infty(C, \wedge^\bullet \Delta)^{ev} \oplus C^\infty(C, \wedge^\bullet \Delta)^{odd} \end{displaymath} \begin{displaymath} \cdots \simeq C^\infty(V) \oplus C^\infty(V, \wedge^\bullet \Delta) \end{displaymath} where the last factor is $\simeq C^\infty(V; \Delta) \simeq C^\infty(V, S^+)$ where $S^+$ is the [[spinor bundle]] now define the multiplication \begin{displaymath} (V \times \Pi \Delta^*) \times (V \times \Pi \Delta^*) \stackrel{\mu}{\to} (V \times \Pi \Delta^*) \end{displaymath} by sayin what it does on sets of probes by $S$ \begin{displaymath} (V \times \Pi \Delta^*)(S) \times (V \times \Pi \Delta^*)(S) \stackrel{\mu(S)}{\to} (V \times \Pi \Delta^*)(S) \end{displaymath} here on the left we have the sets of sections \begin{displaymath} C^\infty(S)^{ev} \otimes V \times C^\infty(S)^{ev} \otimes \Delta^* \end{displaymath} so we can map these as \begin{displaymath} ((v_1, \theta_1), (v_2, \theta_2) ) \mapsto (v_1 + v_2 + \Gamma(\theta_1 \otimes \theta_2), \theta_1 + \theta_2) \end{displaymath} \textbf{Remark} if the data $(V, \Delta^*, \Gamma)$ and $(V', (\Delta^*)', \Gamma')$ is [[isomorphism|isomorphic]] we get compatible notions of structures But if $d = 0,1,2$ and $\delta = 1$ then there is a \emph{unique} such triple with non-degenerate pairing $\Gamma$ up to isomorphism. \textbf{Definition} The structure of a \textbf{[[Euclidean supermanifold]]} on a $(d|\delta)$-dimensional [[supermanifold]] $Y$ is a $(V \times \Pi \Delta^*, End(V, \Delta^*, \Gamma))$-structure. See there for details. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} recall the [[Clifford algebra]] table: \begin{displaymath} \itexarray{ d & Cl(\mathbb{R}^d)^{ev} & Spin(\mathbb{R}^d) \\ \\ 1 & \mathbb{R} & \{\pm 1\} \\ 2 & (\mathbb{R} 1 \oplus \mathbb{R} e_1 e_2, e_i^2 = 1) \simeq \mathbb{C} & S^1 } \end{displaymath} the group structure on $V \times \Pi \Delta^*$ is that of the ``translations'' and ``rotations'' it will be defined on [[generalized element]]s with domain $S$ by maps of sets \begin{displaymath} \mu: (V \times \Pi \Delta^*)(S) \times (V \times \Pi \Delta^*)(S) \to (V \times \Pi \Delta^*)(S) \end{displaymath} \begin{displaymath} (v_1, \theta_1) , (v_2, \theta_2) \mapsto (v_1+ v_2 + \Gamma(\theta_1 \otimes \theta_2), \theta_1 + \theta_2) \end{displaymath} \hypertarget{}{}\subsection*{{$d = 1$}}\label{} $\Delta^* = \mathbb{C}$ \begin{displaymath} \Gamma : \Delta^* \otimes \Delta^* \to V \otimes_{\mathbb{R}} \mathbb{C} \end{displaymath} \begin{displaymath} \mathbb{C} \otimes \mathbb{C} \to \mathbb{R} \otimes_{\mathbb{R}} \mathbb{C} \end{displaymath} \begin{displaymath} 1 \otimes 1 \mapsto 1 \otimes 1 \end{displaymath} so here this is the [[supergroup|super translation group]]. \hypertarget{_2}{}\subsection*{{$d = 2$}}\label{_2} $\Delta^* = \mathbb{C}$ \begin{displaymath} u \in S^1 \simeq U(1) \simeq Spin(\mathbb{R}^2) \end{displaymath} \begin{displaymath} \Delta^* \otimes_{\mathbb{C}} \Delta^* \stackrel{\Gamma}{\to} \mathbb{R}^2 \otimes \mathbb{R} \simeq \mathbb{C} \oplus \mathbb{C} \end{displaymath} the first map is multiplication by $u^{-1}$ and then the isomorphism on the right sends \begin{displaymath} (x,y)\otimes 1 \mapsto (z, \bar z) \end{displaymath} where $z = x + i y$ translation group $V \times \Pi \Delta^* \simeq \mathbb{R}^{2|1}$ multiplication on $S$-elements \begin{displaymath} \mathbb{R}^{2|1}(S) \times \mathbb{R}^{2|1}(S) \to \mathbb{R}^{2|1}(S) \end{displaymath} given by \begin{displaymath} (z_1,\bar z_1, \theta_1), (z_2,\bar z_2, \theta_2) \mapsto (z_1 + z_2, \bar z_1 + \bar z_2 + \theta_1 \theta_2, \theta_1 + \theta_2) \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[Euclidean group]] \item [[general linear supergroup]], [[orthosymplectic supergroup]] \item [[Lorentz group]], [[Poincare group]] \item [[super Poincaré group ]] \end{itemize} [[!redirects Euclidean supergroup]] \end{document}