\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{mathbbol} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{super Lie algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{superalgebra_and_supergeometry}{}\paragraph*{{Super-Algebra and Super-Geometry}}\label{superalgebra_and_supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{as_lie_algebras_internal_to_super_vector_spaces}{As Lie algebras internal to super vector spaces}\dotfill \pageref*{as_lie_algebras_internal_to_super_vector_spaces} \linebreak \noindent\hyperlink{as_supergraded_lie_algebras}{As super-graded Lie algebras}\dotfill \pageref*{as_supergraded_lie_algebras} \linebreak \noindent\hyperlink{as_formal_duals_of_a_chevalleyeilenberg_superalgebras}{As formal duals of a Chevalley-Eilenberg super-algebras}\dotfill \pageref*{as_formal_duals_of_a_chevalleyeilenberg_superalgebras} \linebreak \noindent\hyperlink{AsSuperRepresentableLieAlgebrasOverSuperpoints}{As super-representable Lie algebras in the topos over superpoints}\dotfill \pageref*{AsSuperRepresentableLieAlgebrasOverSuperpoints} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{Classification}{Classification}\dotfill \pageref*{Classification} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_entries}{Related entries}\dotfill \pageref*{related_entries} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{super Lie algebra} is the analog of a [[Lie algebra]] in [[superalgebra]]/[[supergeometry]]. See also [[supersymmetry]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} There are various equivalent ways to state the definition of super Lie algebras. Here are a few (for more discussion see at \emph{[[geometry of physics -- superalgebra]]}): \hypertarget{as_lie_algebras_internal_to_super_vector_spaces}{}\subsubsection*{{As Lie algebras internal to super vector spaces}}\label{as_lie_algebras_internal_to_super_vector_spaces} \begin{defn} \label{SuperLieAlgebraAsLieAlgebraInternalToSuperVectorSpaces}\hypertarget{SuperLieAlgebraAsLieAlgebraInternalToSuperVectorSpaces}{} A \emph{[[super Lie algebra]]} is a [[Lie algebra]] [[internalization|internal]] to the [[symmetric monoidal category]] $sVect = (Vect^{\mathbb{Z}/2}, \otimes_k, \tau^{super} )$ of [[super vector spaces]]. Hence this is \begin{enumerate}% \item a [[super vector space]] $\mathfrak{g}$; \item a homomorphism \begin{displaymath} [-,-] \;\colon\; \mathfrak{g} \otimes_k \mathfrak{g} \longrightarrow \mathfrak{g} \end{displaymath} of super vector spaces (the \emph{super Lie bracket}) \end{enumerate} such that \begin{enumerate}% \item the bracket is skew-symmetric in that the following [[commuting diagram|diagram commutes]] \begin{displaymath} \itexarray{ \mathfrak{g} \otimes_k \mathfrak{g} & \overset{\tau^{super}_{\mathfrak{g},\mathfrak{g}}}{\longrightarrow} & \mathfrak{g} \otimes_k \mathfrak{g} \\ {}^{\mathllap{[-,-]}}\downarrow && \downarrow^{\mathrlap{[-,-]}} \\ \mathfrak{g} &\underset{-1}{\longrightarrow}& \mathfrak{g} } \end{displaymath} (here $\tau^{super}$ is the [[braiding]] [[natural isomorphism]] in the category of [[super vector spaces]]) \item the [[Jacobi identity]] holds in that the following [[commuting diagram|diagram commutes]] \begin{displaymath} \itexarray{ \mathfrak{g} \otimes_k \mathfrak{g} \otimes_k \mathfrak{g} && \overset{\tau^{super}_{\mathfrak{g}, \mathfrak{g}} \otimes_k id }{\longrightarrow} && \mathfrak{g} \otimes_k \mathfrak{g} \otimes_k \mathfrak{g} \\ & {}_{\mathllap{\left[-,\left[-,-\right]\right]} - \left[\left[-,-\right],-\right] }\searrow && \swarrow_{\mathrlap{\left[-,\left[-,-\right]\right]}} \\ && \mathfrak{g} } \,. \end{displaymath} \end{enumerate} \end{defn} \hypertarget{as_supergraded_lie_algebras}{}\subsubsection*{{As super-graded Lie algebras}}\label{as_supergraded_lie_algebras} Externally this means the following: \begin{prop} \label{SuperLieAlgebraTraditional}\hypertarget{SuperLieAlgebraTraditional}{} A [[super Lie algebra]] according to def. \ref{SuperLieAlgebraAsLieAlgebraInternalToSuperVectorSpaces} is equivalently \begin{enumerate}% \item a $\mathbb{Z}/2$-[[graded vector space]] $\mathfrak{g}_{even} \oplus \mathfrak{g}_{odd}$; \item equipped with a [[bilinear map]] (the \emph{super Lie bracket}) \begin{displaymath} [-,-] : \mathfrak{g}\otimes_k \mathfrak{g} \to \mathfrak{g} \end{displaymath} which is \emph{graded} skew-symmetric: for $x,y \in \mathfrak{g}$ two elements of homogeneous degree $\sigma_x$, $\sigma_y$, respectively, then \begin{displaymath} [x,y] = -(-1)^{\sigma_x \sigma_y} [y,x] \,, \end{displaymath} \item that satisfies the $\mathbb{Z}/2$-graded [[Jacobi identity]] in that for any three elements $x,y,z \in \mathfrak{g}$ of homogeneous super-degree $\sigma_x,\sigma_y,\sigma_z\in \mathbb{Z}_2$ then \begin{displaymath} [x, [y, z]] = [[x,y],z] + (-1)^{\sigma_x \cdot \sigma_y} [y, [x,z]] \,. \end{displaymath} \end{enumerate} A [[homomorphism]] of super Lie algebras is a homomorphisms of the underlying [[super vector spaces]] which preserves the Lie bracket. We write \begin{displaymath} sLieAlg \end{displaymath} for the resulting [[category]] of super Lie algebras. \end{prop} \hypertarget{as_formal_duals_of_a_chevalleyeilenberg_superalgebras}{}\subsubsection*{{As formal duals of a Chevalley-Eilenberg super-algebras}}\label{as_formal_duals_of_a_chevalleyeilenberg_superalgebras} \begin{defn} \label{CEAlgebraofSuperLieAlgebra}\hypertarget{CEAlgebraofSuperLieAlgebra}{} For $\mathfrak{g}$ a [[super Lie algebra]] of [[finite number|finite]] [[dimension]], then its \emph{[[Chevalley-Eilenberg algebra]]} $CE(\mathfrak{g})$ is the super-[[Grassmann algebra]] on the [[dual vector space|dual]] super vector space \begin{displaymath} \wedge^\bullet \mathfrak{g}^\ast \end{displaymath} equipped with a [[differential]] $d_{\mathfrak{g}}$ that on generators is the linear dual of the super Lie bracket \begin{displaymath} d_{\mathfrak{g}} \;\coloneqq\; [-,-]^\ast \;\colon\; \mathfrak{g}^\ast \to \mathfrak{g}^\ast \wedge \mathfrak{g}^\ast \end{displaymath} and which is extended to $\wedge^\bullet \mathfrak{g}^\ast$ by the graded Leibniz rule (i.e. as a graded [[derivation]]). $\,$ Here all elements are $(\mathbb{Z} \times \mathbb{Z}/2)$-bigraded, the first being the \emph{cohomological grading} $n$ in $\wedge^\n \mathfrak{g}^\ast$, the second being the \emph{super-grading} $\sigma$ (even/odd). For $\alpha_i \in CE(\mathfrak{g})$ two elements of homogeneous bi-degree $(n_i, \sigma_i)$, respectively, the [[signs in supergeometry|sign rule]] is \begin{displaymath} \alpha_1 \wedge \alpha_2 = (-1)^{n_1 n_2} (-1)^{\sigma_1 \sigma_2}\; \alpha_2 \wedge \alpha_1 \,. \end{displaymath} (See at \emph{[[signs in supergeometry]]} for discussion of this sign rule and of an alternative sign rule that is also in use. ) \end{defn} We may think of $CE(\mathfrak{g})$ equivalently as the [[dg-algebra]] of [[invariant differential form|left-invariant]] [[super differential forms]] on the [[Lie theory|corresponding]] simply connected [[super Lie group]] . The concept of [[Chevalley-Eilenberg algebras]] is traditionally introduced as a means to define [[Lie algebra cohomology]]: \begin{defn} \label{SuperLieAlgebraCohomology}\hypertarget{SuperLieAlgebraCohomology}{} Given a [[super Lie algebra]] $\mathfrak{g}$, then \begin{enumerate}% \item an \emph{$n$-cocycle} on $\mathfrak{g}$ (with [[coefficients]] in $\mathbb{R}$) is an element of degree $(n,even)$ in its [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{g})$ (def. \ref{CEAlgebraofSuperLieAlgebra}) which is $d_{\mathbb{g}}$ closed. \item the cocycle is non-trivial if it is not $d_{\mathfrak{g}}$-exact \item hene the \emph{super-[[Lie algebra cohomology]]} of $\mathfrak{g}$ (with [[coefficients]] in $\mathbb{R}$) is the [[cochain cohomology]] of its [[Chevalley-Eilenberg algebra]] \begin{displaymath} H^\bullet(\mathfrak{g}, \mathbb{R}) = H^\bullet(CE(\mathfrak{g})) \,. \end{displaymath} \end{enumerate} \end{defn} The following says that the [[Chevalley-Eilenberg algebra]] is an equivalent incarnation of the [[super Lie algebra]]: \begin{prop} \label{}\hypertarget{}{} The functor \begin{displaymath} CE \;\colon\; sLieAlg^{fin} \hookrightarrow dgAlg^{op} \end{displaymath} that sends a finite dimensional [[super Lie algebra]] $\mathfrak{g}$ to its [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{g})$ (def. \ref{CEAlgebraofSuperLieAlgebra}) is a [[fully faithful functor]] which hence exibits [[super Lie algebras]] as a [[full subcategory]] of the [[opposite category]] of [[differential-graded algebras]]. \end{prop} \hypertarget{AsSuperRepresentableLieAlgebrasOverSuperpoints}{}\subsubsection*{{As super-representable Lie algebras in the topos over superpoints}}\label{AsSuperRepresentableLieAlgebrasOverSuperpoints} Equivalently, a super Lie algebra is a ``super-representable'' Lie algebra [[internalization|internal]] to the [[cohesive (∞,1)-topos]] [[Super∞Grpd]] over the site of [[super points]] (\hyperlink{Sachse08}{Sachse 08, Section 3.2, towards cor. 3.3}). See the discussion at [[superalgebra]] for details on this. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{Classification}{}\subsubsection*{{Classification}}\label{Classification} (\href{Kac77a}{Kac 77a}, \hyperlink{Kac77b}{Kac 77b}) states a classification of super Lie algebras which are \begin{enumerate}% \item finite dimensional \item simple \item over a [[field]] of [[characteristic zero]]. \end{enumerate} Such an algebra is called of \emph{classical type} if the [[action]] of its even-degree part on the odd-degree part is completely reducible. Those simple finite dimensional algebras not of classical type are of \emph{Cartan type}. \begin{enumerate}% \item classical type \begin{enumerate}% \item four infinite series \begin{enumerate}% \item $A(m,n)$ \item $B(m,n) =$ [[osp]]$(2m+1,2n)$ $m\geq 0$, $n \gt 0$ \item $C(n)$ \item $D(m,n) =$[[osp]]$(2m,2n)$ $m \geq 2$, $n \gt 0$ \end{enumerate} \item two exceptional ones \begin{enumerate}% \item $F(4)$ \item $G(3)$ \end{enumerate} \item a family $D(2,1;\alpha)$ of deformations of $D(2,1)$ \item two ``strange'' series \begin{enumerate}% \item $P(n)$ \item $Q(n)$ \end{enumerate} \end{enumerate} \item Cartan type (\ldots{}) \end{enumerate} The underlying even-graded [[Lie algebra]] for type 2 is as follows \begin{tabular}{l|l|l} $\mathfrak{g}$&$\mathfrak{g}_{even}$&$\mathfrak{g}_{even}$ rep on $\mathfrak{g}_{odd}$\\ \hline $B(m,n)$&$B_m \oplus C_n$&vector $\otimes$ vector\\ $D(m,n)$&$D_m \oplus C_n$&vector $\otimes$ vector\\ $D(2,1,\alpha)$&$A_1 \oplus A_1 \oplus A_1$&vector $\otimes$ vector $\otimes$ vector\\ $F(4)$&$B_3\otimes A_1$&spinor $\otimes$ vector\\ $G(3)$&$G_2\oplus A_1$&spinor $\otimes$ vector\\ $Q(n)$&$A_n$&adjoint\\ \end{tabular} For type 1 the $\mathbb{Z}/2\mathbb{Z}$-grading lifts to an $\mathbb{Z}$-grading with $\mathfrak{g} = \mathfrak{g}_{-1}\oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$. \begin{tabular}{l|l|l} $\mathfrak{g}$&$\mathfrak{g}_{even}$&$\mathfrak{g}_{even}$ rep on $\mathfrak{g}_{{-1}}$\\ \hline $A(m,n)$&$A_m \oplus A_n \oplus C$&vector $\otimes$ vector $\otimes$ $\mathbb{C}$\\ $A(m,m)$&$A_m \oplus A_n$&vector $\otimes$ vector\\ $C(n)$&$\mathbb{C}_{-1} \oplus \mathbb{C}$&vector $\otimes$ $\mathbb{C}$\\ \end{tabular} reviewed e.g. in (\hyperlink{Farmer84}{Farmer 84, p. 25,26}, \hyperlink{Minwalla98}{Minwalla 98, section 4.1}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Some obvious but important classes of examples are the following: \begin{example} \label{SuperVectorSpaceAsAbelianSuperLieAlgebra}\hypertarget{SuperVectorSpaceAsAbelianSuperLieAlgebra}{} every $\mathbb{Z}/2$-[[graded vector space]] $V$ becomes a [[super Lie algebra]] (def. \ref{SuperLieAlgebraAsLieAlgebraInternalToSuperVectorSpaces}, prop. \ref{SuperLieAlgebraTraditional}) by taking the super Lie bracket to be the [[zero morphism|zero map]] \begin{displaymath} [-,-] = 0 \,. \end{displaymath} These may be called the ``abelian'' super Lie algebras. \end{example} \begin{example} \label{OrdinaryLieAlgebraAsSuperLieAlgebra}\hypertarget{OrdinaryLieAlgebraAsSuperLieAlgebra}{} Every ordinary [[Lie algebras]] becomes a [[super Lie algebra]] (def. \ref{SuperLieAlgebraAsLieAlgebraInternalToSuperVectorSpaces}, prop. \ref{SuperLieAlgebraTraditional}) concentrated in even degrees. This constitutes a [[fully faithful functor]] \begin{displaymath} LieAlg \hookrightarrow sLieAlg \,. \end{displaymath} which is a [[coreflective subcategory]] inclusion in that it has a [[left adjoint]] \begin{displaymath} LieAlg \underoverset {\underset{ \overset{ \rightsquigarrow}{(-)} }{\longleftarrow}} {\hookrightarrow} {\bot} sLieAlg \end{displaymath} given on the underlying super vector spaces by restriction to the even graded part \begin{displaymath} \overset{\rightsquigarrow}{\mathfrak{s}} = \mathfrak{s}_{even} \,. \end{displaymath} \end{example} \begin{itemize}% \item The [[super Poincare Lie algebra]] and various of its polyvector extension are super-extension of the ordinary [[Poincare Lie algebra]]. These are the [[supersymmetry algebras]] in the strict original sense of the word. For more on this see at \emph{[[geometry of physics -- supersymmetry]]}. \item [[super q-Schur algebra]] \item For every [[pointer topological space]], the [[Whitehead product]] makes its [[homotopy groups]] into a super Lie algebra over the [[ring]] of [[integers]]. \item higher super Lie algebras Just as [[Lie algebras]] are [[vertical categorification|categorified]] to [[L-infinity algebra]]s and [[L-infinity algebroid]]s, so super Lie algebras categorifie to [[super L-infinity algebra]]s. A secretly famous example is the \begin{itemize}% \item [[supergravity Lie 3-algebra]], [[supergravity Lie 6-algebra]] \end{itemize} \end{itemize} \hypertarget{related_entries}{}\subsection*{{Related entries}}\label{related_entries} \begin{itemize}% \item [[Haag–Łopuszański–Sohnius theorem]] \item [[geometry of physics -- supersymmetry]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} According to \hyperlink{Kac77b}{Kac77b} the definition of super Lie algebra is originally due to \begin{itemize}% \item [[Felix Berezin]], G. I. Kac, Math. Sbornik 82, 343---351 (1970) (Russian) \end{itemize} The original references on the classification of super Lie algebras are \begin{itemize}% \item [[Victor Kac]], \emph{Lie superalgebras}, Advances in Math. 26 (1977), no. 1, 8--96. \item [[Victor Kac]], \emph{A sketch of Lie superalgebra theory}, Comm. Math. Phys. Volume 53, Number 1 (1977), 31-64. (\href{https://projecteuclid.org/euclid.cmp/1103900590}{EUCLID}) \end{itemize} See also \begin{itemize}% \item [[Werner Nahm]], V. Rittenberg, [[Manfred Scheunert]], \emph{The classification of graded Lie algebras} , Physics Letters B Volume 61, Issue 4, 12 April 1976, Pages 383--384 (\href{http://www.sciencedirect.com/science/article/pii/0370269376905943}{publisher}) \item M. Parker, \emph{Classification Of Real Simple Lie Superalgebras Of Classical Type}, J.Math.Phys. 21 (1980) 689-697 (\href{http://inspirehep.net/record/157627?ln=en}{spire}) \end{itemize} Further discussion of classification related specifically to \hyperlink{supersymmetry#Classification}{classification of supersymmetry} is due to \begin{itemize}% \item [[Werner Nahm]], \emph{[[Supersymmetries and their Representations]]}, Nucl.Phys. B135 (1978) 149 (\href{https://inspirehep.net/record/120988/}{spire}, \href{http://cds.cern.ch/record/132743/files/197709213.pdf}{pdf}) \item [[Steven Shnider]], \emph{The superconformal algebra in higher dimensions}, Letters in Mathematical Physics November 1988, Volume 16, Issue 4, pp 377-383 \item [[Victor Kac]], \emph{Classification of supersymmetries}, Proceedings of the ICM, Beijing 2002, vol. 1, 319--344 (\href{http://arxiv.org/abs/math-ph/0302016}{arXiv:math-ph/0302016}) \end{itemize} Introductions and surveys include \begin{itemize}% \item Richard Joseph Farmer, \emph{Orthosymplectic superalgebras in mathematics and science}, PhD Thesis (1984) (\href{http://eprints.utas.edu.au/19542/}{web}, \href{http://eprints.utas.edu.au/19542/1/whole_FarmerRichardJoseph1985_thesis.pdf}{pdf}) \item L. Frappat, A. Sciarrino, P. Sorba, \emph{Dictionary on Lie Superalgebras} (\href{http://arxiv.org/abs/hep-th/9607161}{arXiv:hep-th/9607161}) \item Groeger, \emph{Super Lie groups and super Lie algebras}, lecture notes 2011 (\href{http://www.mathematik.hu-berlin.de/~groegerj/teaching_files/lecture12.pdf}{pdf}) \item L. Frappat, A. Sciarrino, P. Sorba, \emph{Dictionary on Lie Superalgebras} (\href{http://arxiv.org/abs/hep-th/9607161}{arXiv:hep-th/9607161}) \item D. Leites, \emph{Lie superalgebras}, J. Soviet Math. 30 (1985), 2481--2512 (\href{http://dx.doi.org/10.1007/BF02249121}{web}) \item [[Manfred Scheunert]], \emph{The theory of Lie superalgebras. An introduction}, Lect. Notes Math. 716 (1979) \item D. Westra, \emph{Superrings and supergroups} (\href{http://www.mat.univie.ac.at/~michor/westra_diss.pdf}{pdf}) \item [[Shiraz Minwalla]], \emph{Restrictions imposed by superconformal invariance on quan tum field theories} Adv. Theor. Math. Phys. 2, 781 (1998) (\href{http://arxiv.org/abs/hep-th/9712074}{arXiv:hep-th/9712074}). \end{itemize} Discussion in the topos over superpoints is in \begin{itemize}% \item [[Christoph Sachse]], \emph{A Categorical Formulation of Superalgebra and Supergeometry} (\href{http://arxiv.org/abs/0802.4067}{arXiv:0802.4067}) \end{itemize} Discussion of [[Lie algebra extensions]] for super Lie algebras includes \begin{itemize}% \item [[Dmitri Alekseevsky]], [[Peter Michor]], Wolfgang Ruppert, \emph{Extensions of super Lie algebras}, J. Lie Theory 15 (2005) No. 1, 125--134 (\href{http://arxiv.org/abs/math/0101190}{arXiv:math/0101190}) \end{itemize} [[!redirects Lie superalgebra]] [[!redirects super Lie algebras]] [[!redirects super Lie bracket]] [[!redirects super Lie brackets]] \end{document}