\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{super Minkowski spacetime} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{riemannian_geometry}{}\paragraph*{{Riemannian geometry}}\label{riemannian_geometry} [[!include Riemannian geometry - contents]] \hypertarget{supergeometry}{}\paragraph*{{Super-Geometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{gravity}{}\paragraph*{{Gravity}}\label{gravity} [[!include gravity contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{CanonicalCoordinates}{Canonical coordinates}\dotfill \pageref*{CanonicalCoordinates} \linebreak \noindent\hyperlink{cohomology_and_super_branes}{Cohomology and super $p$-branes}\dotfill \pageref*{cohomology_and_super_branes} \linebreak \noindent\hyperlink{AsCentralExtensionOfTheSuperpoint}{As a central extension of the superpoint}\dotfill \pageref*{AsCentralExtensionOfTheSuperpoint} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Super-Minkowski spacetime is a [[super spacetime]] which is an analog in [[supergeometry]] of ordinary [[Minkowski spacetime]]. It is a [[super Cartesian space]] whose odd coordinates form a [[real spin representation]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Ordinary $(d+1)$-dimensional [[Minkowski space]] may be understood as the quotient $Iso(\mathbb{R}^{d-1,1})/(Spin(d-1,1))$ of the [[Poincare group]] by the [[spin group]] cover of [[Lorentz group]] -- the [[translation group]]. Analogously, the for each real irreducible [[spin representation]] $N$ the $dim(N)$-extended [[supermanifold]] \textbf{Minkowski superspace} or \textbf{super Minkowski space} is the quotient of [[supergroups]] of the [[super Poincaré group]] by the corresponding [[spin group]] (a [[super Klein geometry]]). The \emph{[[super-translation group]]}. See there for more details. Alternatively, regarded as a [[super Lie algebra]] this is the quotient of the [[super Poincaré Lie algebra]] by the relevant [[Lorentz Lie algebra]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{CanonicalCoordinates}{}\subsubsection*{{Canonical coordinates}}\label{CanonicalCoordinates} We briefly review some basics of the canonical [[coordinates]] and the super [[Lie algebra cohomology]] of the [[super Poincaré Lie algebra]] and [[super Minkowski space]] (see also at \emph{[[super Cartesian space]]} and at \emph{[[signs in supergeometry]]}). By the general discussion at [[Chevalley-Eilenberg algebra]], we may characterize the [[super Poincaré Lie algebra]] $\mathfrak{Iso}(\mathbb{R}^{d-1,1|N})$ by its CE-algebra $CE(\mathfrak{Iso}(\mathbb{R}^{d-1,1|N}))$ ``of [[left-invariant 1-forms]]'' on its group manifold. Let $d \in \mathbb{N}$ and let $N$ be a real [[spin representation]] of $Spin(d-1,1)$. See at \emph{[[Majorana representation]]} for details. \begin{defn} \label{CEAlgebraOfSuperPoincare}\hypertarget{CEAlgebraOfSuperPoincare}{} The [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{Iso}(\mathbb{R}^{d-1,1|N}))$ is generated on \begin{itemize}% \item elements $\{e^a\}$ and $\{\omega^{ a b}\}$ of degree $(1,even)$ \item and elements $\{\psi^\alpha\}$ of degree $(1,odd)$ \end{itemize} where $a \in \{0,1, \cdots, d-1\}$ is a spacetime index, and where $\alpha$ is an index ranging over a basis of the chosen [[Majorana spinor]] representation $N$. The CE-differential defined as follows \begin{displaymath} d_{CE} \, \omega^{a b} = \omega^a{}_b \wedge \omega^{b c} \end{displaymath} and \begin{displaymath} d_{CE} \, \psi = \frac{1}{4} \omega^{ a b} \Gamma_{a b} \psi \,. \end{displaymath} (which is the differential for the [[semidirect product]] of the [[Poincaré Lie algebra]] [[action|acting]] on the given [[Majorana spinor]] representation) and \begin{displaymath} d_{CE} \, e^{a } = \omega^a{}_b \wedge e^b + \overline{\psi} \wedge \Gamma^a \psi \end{displaymath} where on the right we have the spinor-to-vector pairing in $N$ (\href{Majorana+spinor#SpinorToVectorBilinearPairing}{def.}). This defines the [[super Poincaré super Lie algebra]]. After discarding the terms involving $\omega$ this becomes the CE algebra of the [[super translation algebra]] underlying super Minkowski spacetime. \end{defn} In this way the [[super-Poincaré Lie algebra]] and its extensions is usefully discussed for instance in (\hyperlink{DAuriaFre82}{D'Auria-Fr\'e{} 82}) and in (\href{AzcarragaTownsend89}{Azc\'a{}rraga-Townsend 89}, \hyperlink{CAIB99}{CAIB 99}). In much of the literature instead the following equivalent notation is popular, which more explicitly involves the [[coordinates]] on [[super Minkowski space]]. \begin{remark} \label{}\hypertarget{}{} The abstract generators in def. \ref{CEAlgebraOfSuperPoincare} are identified with [[left invariant 1-forms]] on the [[super-translation group]] (= super Minkowski spacetime) as follows. Let $N$ be a [[real spin representation]] and let $(x^a, \theta^\alpha)$ be the canonical [[coordinates]] on the [[supermanifold]] $\mathbb{R}^{d-1,1\vert N}$ underlying the super-Minkowski super translation group. Then the canonical [[super vielbein]] is the $\mathbb{R}^{d-1,1\vert N}$-valued [[super differential form]] with components \begin{itemize}% \item $\psi^\alpha \coloneqq \mathbf{d} \theta^\alpha$. \item $e^a \coloneqq \mathbf{d} x^a + \overline{\theta} \Gamma^a \mathbf{d} \theta$. \end{itemize} Notice that this then gives the above formula for the differential of the [[super-vielbein]] in def. \ref{CEAlgebraOfSuperPoincare} as \begin{displaymath} \begin{aligned} d e^a & = d (d x^a + \frac{i}{2} \overline{\theta} \Gamma^a d \theta) \\ & = \frac{i}{2} d \overline{\theta}\Gamma^a d \theta \\ & = \frac{i}{2} \overline{\psi}\Gamma^a \psi \end{aligned} \,. \end{displaymath} \end{remark} \begin{remark} \label{Supertorsion}\hypertarget{Supertorsion}{} The term $\frac{i}{2}\bar \psi \Gamma^a \psi$ is sometimes called the \emph{[[supertorsion]]} of the [[super-vielbein]] $e$, because the defining equation \begin{displaymath} d_{CE} e^{a } -\omega^a{}_b \wedge e^b = \frac{i}{2}\bar \psi \Gamma^a \psi \end{displaymath} may be read as saying that $e$ is [[torsion]]-free except for that term. Notice that this term is the only one that appears when the differential is applied to ``Lorentz scalars'', hence to object in $CE(\mathfrak{siso})$ which have ``all indices contracted''. See also at \emph{[[torsion constraints in supergravity]]}. Notably we have \begin{displaymath} d \left( \overline{\psi} \wedge \Gamma^{a_1 \cdots a_p} \psi \wedge e_{a_1} \wedge \cdots \wedge e_{a_p} \right) \propto \left( \overline{\psi} \wedge \Gamma^{a_1 \cdots a_p} \psi \wedge e_{a_1} \wedge \cdots \wedge e_{a_{p-1}} \right) \wedge \left( \overline{\Psi} \wedge \Gamma_{a_p} \Psi \right) \,. \end{displaymath} This remaining operation ``$e \mapsto \Psi^2$'' of the differential acting on Loretz scalars is sometimes denoted ``$t_0$'', e.g. in (\hyperlink{BossardHoweStelle09}{Bossard-Howe-Stelle 09, equation (8)}). This relation is what govers all of the exceptional super Lie algebra cocycles that appear as WZW terms for the Green-Schwarz action below: for some combinations of $(D,p)$ a [[Fierz identity]] implies that the term \begin{displaymath} \left( \overline{\psi} \wedge \Gamma^{a_1 \cdots a_p} \psi \wedge e_{a_1} \wedge \cdots \wedge e_{a_{p-1}} \right) \wedge \left( \overline{\Psi} \wedge \Gamma_{a_p} \Psi \right) \end{displaymath} vanishes identically, and hence in these dimensions the term \begin{displaymath} \overline{\psi} \wedge \Gamma^{a_1 \cdots a_p} \psi \wedge e_{a_1} \wedge \cdots \wedge e_{a_p} \end{displaymath} is a [[cocycle]]. See also the \hyperlink{BraneScan}{brane scan} table below. \end{remark} \hypertarget{cohomology_and_super_branes}{}\subsubsection*{{Cohomology and super $p$-branes}}\label{cohomology_and_super_branes} As opposed to ordinary [[Minkowski space]], the [[de Rham cohomology]] of [[left invariant forms]] of super-Minkowski space contains nontrivial exceptional [[cocycles]] (the \emph{[[brane scan]]}). These serve as the [[Wess-Zumino-Witten model|WZW terms]] for the [[Green-Schwarz action functional]] (see there for more) of super-$p$-[[branes]] propagating on super-Minkowski space (\hyperlink{FSS13}{FSS 13}). The corresponding $L_\infty$-extensions are \emph{[[extended superspacetime]]}. \hypertarget{AsCentralExtensionOfTheSuperpoint}{}\subsubsection*{{As a central extension of the superpoint}}\label{AsCentralExtensionOfTheSuperpoint} Regarded as a [[super Lie algebra]], super Minkowski spacetime $\mathbb{R}^{d-1,1|N}$ has the single nontrivial super-Lie bracket given by the spinor bilinear pairing \begin{displaymath} \overline{(-)}\Gamma (-) \colon S \otimes S \longrightarrow V \end{displaymath} discussed in detail at \emph{[[spin representation]]}. Notice that this means that if one regards the [[superpoint]] $\mathbb{R}^{0|dim(N)}$ as an [[abelian super Lie algebra]], then super Minkowski spacetime is the [[Lie algebra extension]] of that by this bilinear pairing regarded as a super-[[Lie algebra cohomology|Lie algebra cocycle]] with [[coefficients]] in $\mathbb{R}^{d}$. \begin{displaymath} \itexarray{ \mathbb{R}^{d} &\longrightarrow& \mathbb{R}^{d-1,1|N} \\ && \downarrow \\ && \mathbb{R}^{0|dim(N)} } \end{displaymath} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[super anti de Sitter spacetime]] \end{itemize} [[!include local and global geometry - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The $d = 4$, $N =2$ super Minkowski spacetime was originally introduced in \begin{itemize}% \item [[Abdus Salam]] J.A. Strathdee, \emph{Supergauge Transformations}, Nucl.Phys. B76 (1974) 477-482 (\href{http://inspirehep.net/record/89208}{spire}) \item [[Abdus Salam]] J.A. Strathdee, Physical Review D11, 1521-1535 (1975) \end{itemize} see at ``[[superspace]] in physics''. Further discussion includes: \begin{itemize}% \item \emph{Super spacetimes and super Poincar\'e{}-group} (\href{http://www.math.ucla.edu/~vsv/papers/ch6.pdf}{pdf}) \item [[Daniel Freed]], lecture 6 of \emph{Classical field theory and Supersymmetry}, IAS/Park City Mathematics Series Volume 11 (2001) (\href{https://www.ma.utexas.edu/users/dafr/pcmi.pdf}{pdf}) \item [[Daniel Freed]], \emph{Lecture 4 of [[Five lectures on supersymmetry]]} \item [[Veeravalli Varadarajan]], section 7 of \emph{Supersymmetry for mathematicians: An introduction} \item [[Leonardo Castellani]], [[Riccardo D'Auria]], \emph{[[Pietro Fre]], page 370, part II section II.3.3 of}[[Supergravity and Superstrings - A Geometric Perspective]]\_ \end{itemize} Discussion of how [[super L-infinity algebra]] [[L-infinity cocycle|extensions]] of super Minkowski spacetime yield all the [[brane scan]] of [[string theory]]/[[M-theory]] is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:The brane bouquet]]} (2013) \end{itemize} [[!redirects super Minkowski spacetime]] [[!redirects super-Minkowski spacetime]] [[!redirects super Minkowski spacetimes]] [[!redirects super-Minkowski spacetimes]] [[!redirects super Minkowski space]] [[!redirects super Minkowski space]] [[!redirects super Minkowski space]] [[!redirects super Minkowski super Lie algebra]] [[!redirects super Minkowski super Lie algebras]] \end{document}