\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{super infinity-groupoid} \begin{quote}% This entry is about [[∞-groupoids]] parameterized over [[superpoints]]. Hence [[discrete ∞-groupoids]] equipped with super-structure. For \emph{smoothly} supergeometric [[∞-groupoids]], parameterized over [[supermanifolds]], see \emph{[[super smooth ∞-groupoid]]} and \emph{[[super formal smooth ∞-groupoid]]}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohesive_toposes}{}\paragraph*{{Cohesive $\infty$-Toposes}}\label{cohesive_toposes} [[!include cohesive infinity-toposes - contents]] \hypertarget{supergeometry}{}\paragraph*{{Supergeometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{InfinitesimalCohesion}{Infinitesimal cohesion}\dotfill \pageref*{InfinitesimalCohesion} \linebreak \noindent\hyperlink{relation_to_smooth_super_groupoids}{Relation to smooth super $\infty$-groupoids}\dotfill \pageref*{relation_to_smooth_super_groupoids} \linebreak \noindent\hyperlink{superalgebra}{Superalgebra}\dotfill \pageref*{superalgebra} \linebreak \noindent\hyperlink{supergeometry_2}{Supergeometry}\dotfill \pageref*{supergeometry_2} \linebreak \noindent\hyperlink{structures_in_}{Structures in $Super \infty Grpd$}\dotfill \pageref*{structures_in_} \linebreak \noindent\hyperlink{ExponentiatedLieAlgebras}{Exponentiated $\infty$-Lie algebras}\dotfill \pageref*{ExponentiatedLieAlgebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{super $\infty$-groupoid} is an [[∞-groupoid]] modeled on [[super points]]. The notion subsumes and generalizes that of \emph{bare} [[super groups]], but not that of \emph{[[super Lie groups]]}, the latter are instead examples of [[smooth super ∞-groupoids]] sitting over the base of super $\infty$-groupoids. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{SuperInfinityGroupoids}\hypertarget{SuperInfinityGroupoids}{} Let $SuperPoints$ be the [[category]] of [[super points]], regarded as a [[site]] with trivial [[coverage]]. The [[(∞,1)-sheaf (∞,1)-topos]] over $SuperPoint$ \begin{displaymath} Super\infty Grpd := Sh_{(\infty,1)}(SuperPoint) \end{displaymath} we call the [[(∞,1)-topos]] of \textbf{super $\infty$-groupoids}. \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{InfinitesimalCohesion}{}\subsubsection*{{Infinitesimal cohesion}}\label{InfinitesimalCohesion} \begin{prop} \label{}\hypertarget{}{} The [[(∞,1)-topos]] $Super\infty Grpd$, def. \ref{SuperInfinityGroupoids}, is an [[infinitesimal cohesive (∞,1)-topos]] over [[∞Grpd]]. \end{prop} \begin{proof} Being an [[(∞,1)-category of (∞,1)-presheaves]] the constant $\infty$-presheaf [[(∞,1)-functor]] \begin{displaymath} Disc \;\colon\; \infty Grpd \longrightarrow Super \infty Grpd \end{displaymath} has a [[left adjoint]] $\Pi$ given by forming [[(∞,1)-colimits]] and a [[right adjoint]] $\Gamma$ given by [[(∞,1)-limits]]. Since the [[category]] $SuperPoints$ has a [[terminal object]] (the point $\mathbb{R}^{0|0}$) its [[opposite category]] has an [[initial object]] and so $\Gamma$ is just given by evaluation at that object. $\Gamma X \simeq X(\ast)$. It follows that $\Gamma\circ Disc \simeq Id$ and hence (by the discussion at [[adjoint (∞,1)-functor]]) that $Disc$ is a [[full and faithful (∞,1)-functor]]. Moreover, evaluation preserves [[(∞,1)-limits]] (since for [[(∞,1)-presheaves]] there are computed objectwise for each object of the [[site]]) and so by the [[adjoint (∞,1)-functor theorem]] there does exist a further [[right adjoint]] $coDisc \colon \infty Grpd \hookrightarrow Super \infty Grpd$. By the [[(∞,1)-Yoneda lemma]] and by [[adjoint (∞,1)-functor|adjointness]] this sends an [[∞-groupoid]] $X$ to the [[(∞,1)-presheaf]] given by \begin{displaymath} coDisc(X) \;\colon\; \mathbb{R}^{0|q} \;\mapsto\; Super\infty Grpd(\mathbb{R}^{0|q}, coDisc(X)) \simeq \infty Grpd(\Gamma(\mathbb{R}^{0|q}), X) \,. \end{displaymath} Now the crucial aspect is that $\Gamma(\mathbb{R}^{0|q}) \simeq \ast$ for all $q \in \mathbb{N}$ since every [[superpoint]] has a unique [[global point]], this being the archetypical property of [[infinitesimally thickened points]]. So it follows that \begin{displaymath} coDisc \simeq Disc \end{displaymath} and hence that $\Pi \simeq \Gamma$. Therefore $\Pi$ preserves in particular [[finite products]] so that $Super \infty Grpd$ is [[cohesion|cohesive]], but of course this shows now that it is in fact [[infinitesimal cohesion|infinitesimally cohesive]]. \end{proof} \hypertarget{relation_to_smooth_super_groupoids}{}\subsubsection*{{Relation to smooth super $\infty$-groupoids}}\label{relation_to_smooth_super_groupoids} Let \begin{displaymath} \begin{aligned} SmoothSuper\infty Grpd & := Sh_{(\infty,1)}(CartSp, Super\infty Grpd) \simeq Sh_{(\infty,1)}(CartSp\times SuperPoint, \infty Grpd) \\ & =: Sh_{(\infty,1)}(CartSp\times SuperPoint) \end{aligned} \end{displaymath} be the [[(∞,1)-sheaf (∞,1)-topos]] of [[smooth super ∞-groupoids]]. This is cohesive over the [[base topos]] $Super \infty Grpd$. For more on this see at \emph{[[smooth super ∞-groupoid]]}. \hypertarget{superalgebra}{}\subsubsection*{{Superalgebra}}\label{superalgebra} $Super \infty Grpd$ is naturally a [[ringed topos]], with [[commutative ring]]-object \begin{displaymath} \mathbb{K} \in Super \infty Grpd \end{displaymath} which as a presheaf $\mathbb{K} : SuperPoint^{op} \simeq GrAlg \to Set \hookrightarrow sSet$ is given by \begin{displaymath} \mathbb{K} : Spec \Lambda \mapsto \Lambda_{even} \end{displaymath} with ring structure induced over each [[super point]] $\mathbb{R}^{0|q} = Spec \Lambda = Spec \wedge^\bullet \mathbb{R}^q$ from the ring structure of the even part $\Lambda_{even}$ of the [[Grassmann algebra]] $\lambda$. The [[higher algebra]] over this ring object is what is called [[superalgebra]]. See there for details on this. For $k$ the ground field and $j(k)$ its embedding as a super vector space into the topos by the map discussed at \href{super+algebra#SuperModulesAsbbKModules}{superalgebra -- In the topos over superpoints -- K-modules} we have \begin{displaymath} \mathbb{K} \simeq j(k) \,. \end{displaymath} \hypertarget{supergeometry_2}{}\subsubsection*{{Supergeometry}}\label{supergeometry_2} (\ldots{}) [[supergeometry]] (\ldots{}) \hypertarget{structures_in_}{}\subsection*{{Structures in $Super \infty Grpd$}}\label{structures_in_} We discuss the general abstract realized in $Super \infty Grpd$. \hypertarget{ExponentiatedLieAlgebras}{}\subsubsection*{{Exponentiated $\infty$-Lie algebras}}\label{ExponentiatedLieAlgebras} We discuss in $Super \infty Grpd$. \begin{defn} \label{SuperLInfinityAlgebra}\hypertarget{SuperLInfinityAlgebra}{} A \textbf{[[super L-∞ algebra]]} is an [[L-∞ algebra]] [[internalization|internal to]] [[super vector space]]s. The [[category]] of super $L_\infty$-algebras is \begin{displaymath} S L_\infty Alg := (sdgcAlg^+_{sf})^{op} \end{displaymath} the [[opposite category]] of [[semi-free dga|semi-free]] [[dg-algebra]]s in [[super vector space]]s: [[commutative monoid]]s in the category of [[cochain complex]]es of [[super vector space]]s whose underlying commutative [[graded algebra]] is free on generators in positive degree. For $\mathfrak{g}$ a super $L_\infty$-algebra we write $CE(\mathfrak{g})$ for the corresponding [[dg-algebra]]: its [[Chevalley-Eilenberg algebra]]. \end{defn} \begin{defn} \label{Exp}\hypertarget{Exp}{} For $\mathfrak{g}$ a super $L_\infty$-algebra, its [[Lie integration]] is the super $\infty$-groupoid presented by the [[simplicial presheaf]] \begin{displaymath} \exp(\mathfrak{g}) \in [SuperPoint^{op}, sSet] \end{displaymath} on superpoints given by the assignment \begin{displaymath} \exp(\mathfrak{g}) \;\colon\; (\mathbb{R}^{0|q}, [k]) \mapsto Hom_{sdgcAlg_k}\big( CE(\mathfrak{g}), \Omega^\bullet_{vert,si}(\mathbb{R}^{0|q} \times \Delta^k) \big) \,. \end{displaymath} Here on the right we have [[vertical differential form]]s with respect to the projection of [[supermanifold]]s $\mathbb{R}^{0|q} \times \Delta^k \to \mathbb{R}^{0|q}$ and with [[sitting instants]] (see [[Lie integration]], \href{Lie+integration#SmoothDifferentialFormsOnSimplicesWithSittingInstants}{this Def.}). \end{defn} \begin{lemma} \label{SuperLieIntegrationOverSuperPointIsLieIntegrationOfEvenPartAfterTensoring}\hypertarget{SuperLieIntegrationOverSuperPointIsLieIntegrationOfEvenPartAfterTensoring}{} For $q \in \mathbb{N}$ write $\Lambda_q \coloneqq C^\infty(\mathbb{R}^{0|q})$ for the [[Grassmann algebra]] on $q$-generators, being the global functions on the [[super point]] $\mathbb{R}^{0|q}$. Over $\mathbb{R}^{0|q}$ the super Lie integration from def \ref{Exp} is the ordinary [[Lie integration]] of the ordinary [[L-∞ algebra]] $(\mathfrak{g} \otimes_k \Lambda_q)_{even}$ \begin{displaymath} \exp\left( \mathfrak{g} \right)\left(\mathbb{R}^{0|q}\right) = \exp\left( (\mathfrak{g}\otimes_k \Lambda_q)_{even} \right) \,. \end{displaymath} \end{lemma} \begin{proof} This is the standard [[even rules]] mechanism. Using that the category $sVect$ of finite-dimensional [[super vector spaces]] is a [[compact closed category]], we compute \begin{displaymath} \begin{aligned} Hom_{sdgcAlg} \left( CE(\mathfrak{g}), \Omega^\bullet_{vert,si}(\mathbb{R}^{0|q} \times \Delta^n) \right) & \simeq Hom_{sdgcAlg}\left( CE(\mathfrak{g}), C^\infty(\mathbb{R}^{0|q}) \otimes \Omega^\bullet( \Delta^n) \right) \\ & \simeq Hom_{sdgcAlg}\left( CE(\mathfrak{g}), \Lambda_q \otimes \Omega^\bullet( \Delta^n) \right) \\ & \subset Hom_{Ch^\bullet(sVect)}\left( \mathfrak{g}^*[1], \Lambda_q \otimes \Omega^\bullet( \Delta^n) \right) \\ & \simeq Hom_{Ch^\bullet(sVect)}\left( \mathfrak{g}^*[1]\otimes (\Lambda_q)^*, \Omega^\bullet( \Delta^n) \right) \\ & \simeq Hom_{Ch^\bullet(sVect)}\left( (\mathfrak{g} \otimes \Lambda_q)^*[1], \Omega^\bullet( \Delta^n) \right) \\ & \simeq Hom_{Ch^\bullet(sVect)}\left( (\mathfrak{g} \otimes \Lambda_q)^*[1]_{even}, \Omega^\bullet( \Delta^n) \right) \\ & \supset Hom_{sdgcAlg}\left( CE((\mathfrak{g}\otimes_k \Lambda_q)_{even}), \Omega^\bullet( \Delta^n) \right) \end{aligned} \,. \end{displaymath} Here in the third step we used that the underlying dg-algebra of $CE(\mathfrak{g})$ is free to find the space of morphisms of dg-algebras inside that of super-vector spaces (of generators) as indicated. Since the differential on both sides is $\Lambda_q$-linear, the claim follows. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cohesive (∞,1)-topos]] \begin{itemize}% \item [[discrete ∞-groupoid]] \item [[Euclidean-topological ∞-groupoid]] \item [[smooth ∞-groupoid]] \item [[synthetic differential ∞-groupoid]] \item \textbf{super ∞-groupoid} \item [[smooth super ∞-groupoid]] \item [[synthetic differential super ∞-groupoid]] \end{itemize} \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The observation that the study of super-structures in mathematics is usefully regarded as taking place over the [[base topos]] on the [[site]] of [[super points]] has been made around 1984 in \begin{itemize}% \item [[Albert Schwarz]], \emph{On the definition of superspace}, Teoret. Mat. Fiz. (1984) Volume 60, Number 1, Pages 37--42, (\href{http://www.mathnet.ru/links/b12306f831b8c37d32d5ba8511d60c93/tmf5111.pdf}{russian original pdf}) \item [[Alexander Voronov]], \emph{Maps of supermanifolds} , Teoret. Mat. Fiz. (1984) Volume 60, Number 1, Pages 43--48 \end{itemize} and in \begin{itemize}% \item V. Molotkov., \emph{Infinite-dimensional $\mathbb{Z}_2^k$-supermanifolds} , ICTP preprints, IC/84/183, 1984. \end{itemize} A summary/review is in the appendix of \begin{itemize}% \item Anatoly Konechny and [[Albert Schwarz]], \emph{On $(k \oplus l|q)$-dimensional supermanifolds} in \emph{Supersymmetry and Quantum Field Theory} ([[Dmitry Volkov]] memorial volume) Springer-Verlag, 1998, Lecture Notes in Physics, 509 , J. Wess and V. Akulov (editors)(\href{http://arxiv.org/abs/hep-th/9706003}{arXiv:hep-th/9706003}) \emph{Theory of $(k \oplus l|q)$-dimensional supermanifolds} Sel. math., New ser. 6 (2000) 471-486 \item [[Albert Schwarz]], I- Shapiro, \emph{Supergeometry and Arithmetic Geometry} (\href{http://arxiv.org/abs/hep-th/0605119}{arXiv:hep-th/0605119}) \end{itemize} An fairly comprehensive and introductory review is in \begin{itemize}% \item [[Christoph Sachse]], \emph{A Categorical Formulation of Superalgebra and Supergeometry} (\href{http://arxiv.org/abs/0802.4067}{arXiv:0802.4067}) \end{itemize} The site of formal duals not just to [[Grassmann algebras]] but to all super-[[infinitesimally thickened point]]s is discussed in \begin{itemize}% \item L. Balduzzi, C. Carmeli, R. Fioresi, \emph{The local functors of points of Supermanifolds} (\href{http://arxiv.org/abs/0908.1872}{arXiv:0908.1872}) \end{itemize} [[!redirects super ∞-groupoid]] [[!redirects super infinity-groupoids]] [[!redirects super ∞-groupoids]] [[!redirects Super∞Grpd]] [[!redirects super ∞-group]] [[!redirects super ∞-groups]] [[!redirects super infinity-group]] [[!redirects super infinity-groups]] \end{document}