\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{supergroup} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{supergeometry}{}\paragraph*{{Supergeometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{algebraic_super_groups}{Algebraic super groups}\dotfill \pageref*{algebraic_super_groups} \linebreak \noindent\hyperlink{super_lie_groups}{Super Lie groups}\dotfill \pageref*{super_lie_groups} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{in_terms_of_generalized_group_elements}{In terms of generalized group elements}\dotfill \pageref*{in_terms_of_generalized_group_elements} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{SuperTranslationGroup}{The super-translation group}\dotfill \pageref*{SuperTranslationGroup} \linebreak \noindent\hyperlink{the_super_euclidean_group}{The super Euclidean group}\dotfill \pageref*{the_super_euclidean_group} \linebreak \noindent\hyperlink{general_linear_supergroup}{General linear supergroup}\dotfill \pageref*{general_linear_supergroup} \linebreak \noindent\hyperlink{orthosymplectic_supergroup}{Orthosymplectic supergroup}\dotfill \pageref*{orthosymplectic_supergroup} \linebreak \noindent\hyperlink{finite_supergroups}{Finite super-groups}\dotfill \pageref*{finite_supergroups} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{representations_tannaka_duality_and_delignes_theorem}{Representations, Tannaka duality and Deligne's theorem}\dotfill \pageref*{representations_tannaka_duality_and_delignes_theorem} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{super-group} is the analog in [[supergeometry]] of [[Lie groups]] in [[differential geometry]]. \hypertarget{algebraic_super_groups}{}\subsection*{{Algebraic super groups}}\label{algebraic_super_groups} An [[affine scheme|affine]] algebraic super group is the [[formal dual]] of a [[superalgebra|super]]-[[commutative Hopf algebra]]. \hypertarget{super_lie_groups}{}\subsection*{{Super Lie groups}}\label{super_lie_groups} \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} A \emph{super Lie group} is a [[group object]] in the [[category]] [[SDiff]] of [[supermanifolds]], that is a super [[Lie group]]. \hypertarget{in_terms_of_generalized_group_elements}{}\paragraph*{{In terms of generalized group elements}}\label{in_terms_of_generalized_group_elements} One useful way to characterize [[group object]]s $G$ in the [[category]] $SDiff$ of [[supermanifold]] is by first sending $G$ with the [[Yoneda embedding]] to a [[presheaf]] on $SDiff$ and then imposing a lift of $Y(G) : SDiff^{op} \to Set$ through the [[forgetful functor]] [[Grp]] $\to$ [[Set]] that sends a (ordinary) [[group]] to its underlying [[set]]. So a group object structure on $G$ is a diagram \begin{displaymath} \itexarray{ && Grp \\ & {}^{(G,\cdot)}\nearrow & \downarrow \\ SDiff^{op} &\stackrel{Y(G)}{\to}& Set } \,. \end{displaymath} This gives for each [[supermanifold]] $S$ an ordinary group $(G(S), \cdot)$, so in particular a product operation \begin{displaymath} \cdot_S : G(S) \times G(S) \to G(S) \,. \end{displaymath} Moreover, since morphisms in $Grp$ are group homomorphisms, it follows that for every morphism $f : S \to T$ of [[supermanifold]]s we get a commuting diagram \begin{displaymath} \itexarray{ G(S) \times G(S) &\stackrel{\cdot_S}{\to}& G(S) \\ \uparrow^{G(f)\times G(f)} && \uparrow^{G(f)} \\ G(T) \times G(T) &\stackrel{\cdot_T}{\to}& G(T) } \end{displaymath} Taken together this means that there is a morphism \begin{displaymath} Y(G \times G) \to Y(G) \end{displaymath} of representable presheaves. By the [[Yoneda lemma]], this uniquely comes from a morphism $\cdot : G \times G \to G$, which is the product of the group structure on the object $G$ that we are after. etc. This way of thinking about supergroups is often explicit in some parts of the literature on supergeometry: some authors define a supergroup or [[super Lie algebra]] as a rule that assigns to every [[Grassmann algebra]] $A$ over an ordinary [[vector space]] an ordinary [[group]] $G(A)$ or [[Lie algebra]] and to a morphism of [[Grassmann algebra]]s $A \to B$ \emph{covariantly} a morphism of groups $G(A) \to G(B)$. But the [[Grassmann algebra]] on an $n$-dimensional [[vector space]] is naturally isomorphic to the function ring on the [[supermanifold]] $\mathbb{R}^{0|n }$. So the definition of supergroups in terms of Grassmann algebras is secretly the same as the above definition in terms of the [[Yoneda embedding]]. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \hypertarget{SuperTranslationGroup}{}\paragraph*{{The super-translation group}}\label{SuperTranslationGroup} also called the \textbf{[[super-Heisenberg group]]} The additive group structure on $\mathbb{R}^{1|1}$ is given on [[generalized element]]s in (i.e. in the logic internal to) the [[topos]] of [[sheaf|sheaves]] on the category [[SCartSp]] of [[cartesian space|cartesian]] superspaces by \begin{displaymath} \mathbb{R}^{1|1} \times \mathbb{R}^{1|1} \to \mathbb{R}^{1|1} \end{displaymath} \begin{displaymath} (t_1, \theta_1), (t_2, \theta_2) \mapsto (t_1 + t_2 + \theta_1 \theta_2, \theta_1 + \theta_2) \,. \end{displaymath} Recall how the notation works here: by the [[Yoneda embedding]] we have a [[full and faithful functor]] \begin{quote}% [[SDiff]] $\hookrightarrow$ $Fun(SDiff^{op}, Set)$ \end{quote} and we also have the theorem, discussed at [[supermanifold]]s, that maps from some $S \in SDiff$ into $\mathbb{R}^{p|q}$ is given by a tuple of $p$ even section $t_i$ and $q$ odd sections $\theta_j$. The above notation specifies the map of supermanifolds by displaying what map of sets of maps from some test object $S$ it corresponds to under the [[Yoneda embedding]]. Now, for each $S \in$ [[SDiff]] there is a [[group]] structure on the [[hom-set]] $SDiff(S, \mathbb{R}^{1|1}) \simeq C^\infty(S)^{ev} \times C^\infty(S)^{odd}$ given by precisely the above formula for this given $S$ \begin{displaymath} \mathbb{R}^{1|1}(S) \times \mathbb{R}^{1|1}(S) \to \mathbb{R}^{1|1}(S) \end{displaymath} \begin{displaymath} (t_1, \theta_1), (t_2, \theta_2) \mapsto (t_1 + t_2 + \theta_1 \theta_2, \theta_1 + \theta_2) \,. \end{displaymath} where $(t_i, \theta_i) \in C^\infty(S)^{ev} \times C^\infty(S)^{odd}$ etc and where the addition and product on the right takes place in the function [[super algebra]] $C^\infty(S)$. Since the formula looks the same for all $S$, one often just writes it without mentioning $S$ as above. \hypertarget{the_super_euclidean_group}{}\paragraph*{{The super Euclidean group}}\label{the_super_euclidean_group} The super-translation group is the $(1|1)$-dimensional case of the [[super Euclidean group]]. \hypertarget{general_linear_supergroup}{}\paragraph*{{General linear supergroup}}\label{general_linear_supergroup} [[general linear supergroup]] \ldots{} \hypertarget{orthosymplectic_supergroup}{}\paragraph*{{Orthosymplectic supergroup}}\label{orthosymplectic_supergroup} [[orthosymplectic supergroup]] \ldots{} \hypertarget{finite_supergroups}{}\subsection*{{Finite super-groups}}\label{finite_supergroups} There is a finite analog for super-groups that does not quite fit in the framework presented here: \begin{defn} \label{}\hypertarget{}{} A finite super-group is a tuple $(G, z \in G)$, where $G$ is a finite group and $z$ is central and squares to $1$. The representations of a finite super-group are $\mathbb{Z}_2$-graded: An irreducible representation has odd degree if $z$ acts by negation, and even degree if it acts as the identity. This definition is found e.g. in: \begin{itemize}% \item Paul Bruillard, Cesar Galindo, Tobias Hagge, Siu-Hung Ng, Julia Yael Plavnik, Eric C. Rowell, Zhenghan Wang, \emph{Fermionic Modular Categories and the 16-fold Way} (\href{https://arxiv.org/pdf/1603.09294v2}{pdf}) \end{itemize} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{representations_tannaka_duality_and_delignes_theorem}{}\subsubsection*{{Representations, Tannaka duality and Deligne's theorem}}\label{representations_tannaka_duality_and_delignes_theorem} [[Deligne's theorem on tensor categories]] (see there for details) says that every suitably well-behave linear [[tensor category]] is the [[category of representations]] of an algebraic supergroup. In particular the [[Hopf algebra]] of functions on an affine algebraic supergroup is a [[triangular Hopf algebra]]. [[!include structure on algebras and their module categories - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Dennis Westra]], \emph{Superrings and supergroups}, 2009 (\href{http://www.mat.univie.ac.at/~michor/westra_diss.pdf}{pdf}) \item Groeger, \emph{Super Lie groups and super Lie algebras}, lecture notes 2011 (\href{http://www.mathematik.hu-berlin.de/~groegerj/teaching_files/lecture12.pdf}{pdf}) \item [[Veeravalli Varadarajan]], section 7.1 of \emph{[[Supersymmetry for mathematicians]]: An introduction} \end{itemize} Discussion of [[group extensions]] of supergroups includes \begin{itemize}% \item [[Christopher Drupieski]], \emph{Strict polynomial superfunctors and universal extension classes for algebraic supergroups} (\href{http://arxiv.org/abs/1408.5764}{arXiv:1408.5764}) \end{itemize} Discussion as Hopf-superalgebras includes \begin{itemize}% \item Nicol\'a{}s Andruskiewitsch, Iv\'a{}n Angiono, Hiroyuki Yamane, \emph{On pointed Hopf superalgebras}, Contemp. Math. vol. 544, pp. 123--140, 2011 (\href{https://arxiv.org/abs/1009.5148}{arXiv:1009.5148}) \end{itemize} [[!redirects supergroups]] [[!redirects super Lie group]] [[!redirects super Lie groups]] [[!redirects super group]] [[!redirects super groups]] [[!redirects Lie supergroup]] [[!redirects Lie supergroups]] [[!redirects super-group]] [[!redirects super-groups]] \end{document}