\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{supermanifold} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{supergeometry}{}\paragraph*{{Supergeometry}}\label{supergeometry} [[!include supergeometry - contents]] \hypertarget{manifolds_and_cobordisms}{}\paragraph*{{Manifolds and cobordisms}}\label{manifolds_and_cobordisms} [[!include manifolds and cobordisms - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{as_locally_representable_sheaves_on_super_cartesian_spaces}{As locally representable sheaves on super Cartesian spaces}\dotfill \pageref*{as_locally_representable_sheaves_on_super_cartesian_spaces} \linebreak \noindent\hyperlink{AsLocallyRingedSpace}{As locally ringed spaces}\dotfill \pageref*{AsLocallyRingedSpace} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{AsLocallyRingedSpacesProperties}{Properties}\dotfill \pageref*{AsLocallyRingedSpacesProperties} \linebreak \noindent\hyperlink{ModeledOnGrassmannAlgebra}{As manifolds modeled on Grassman algebras}\dotfill \pageref*{ModeledOnGrassmannAlgebra} \linebreak \noindent\hyperlink{OverSuperpoints}{As manifolds over the base topos on superpoints}\dotfill \pageref*{OverSuperpoints} \linebreak \noindent\hyperlink{definition_3}{Definition}\dotfill \pageref*{definition_3} \linebreak \noindent\hyperlink{properties_2}{Properties}\dotfill \pageref*{properties_2} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{as_locally_ringed_spaces_2}{As locally ringed spaces}\dotfill \pageref*{as_locally_ringed_spaces_2} \linebreak \noindent\hyperlink{ReferencesOverSuperpoints}{As manifolds over superpoints}\dotfill \pageref*{ReferencesOverSuperpoints} \linebreak \noindent\hyperlink{as_manifolds_modelled_on_grassmann_algebras}{As manifolds modelled on Grassmann algebras}\dotfill \pageref*{as_manifolds_modelled_on_grassmann_algebras} \linebreak \noindent\hyperlink{other}{Other}\dotfill \pageref*{other} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[supermanifold]] is a [[space]] locally modeled on [[Cartesian space]]s and [[superpoints]]. There are different approaches to the definition and theory of supermanifolds in the literature. The definition \begin{itemize}% \item \hyperlink{AsLocallyRingedSpace}{As locally ringed spaces} \end{itemize} is popular. The definition \begin{itemize}% \item \hyperlink{OverSuperpoints}{As manifolds over superpoints} \end{itemize} has been argued to have advantages, see also the references at [[super ∞-groupoid]]. \hypertarget{as_locally_representable_sheaves_on_super_cartesian_spaces}{}\subsection*{{As locally representable sheaves on super Cartesian spaces}}\label{as_locally_representable_sheaves_on_super_cartesian_spaces} See at \emph{[[geometry of physics -- supergeometry]]} the section \emph{\href{geometry+of+physics+--+supergeometry#Supermanifolds}{Supermanifolds}}. \hypertarget{AsLocallyRingedSpace}{}\subsection*{{As locally ringed spaces}}\label{AsLocallyRingedSpace} We discuss a description of supermanifolds that goes back to (\href{BerezinLeites}{BerezinLeites}). \hypertarget{definition}{}\subsubsection*{{Definition}}\label{definition} \begin{defn} \label{SupermanifoldLocallyRingedSpace}\hypertarget{SupermanifoldLocallyRingedSpace}{} A \textbf{supermanifold} $X$ of dimension $p|q$ is a [[ringed space]] $(|X|, O_X)$ where \begin{itemize}% \item the [[topological space]] $|X|$ is [[second countable space]], [[Hausdorff space]], \item $O_X$ is a [[sheaf]] of commutative [[super algebras]] that is locally on small enough open subsets $U \subset |X|$ isomorphic to one of the form $C^\infty(\mathbb{R}^p) \otimes \wedge^\bullet \mathbb{R}^q$. \end{itemize} A [[morphism]] of supermanifolds is a [[homomorphism]] of [[ringed spaces]] (\ldots{}). \end{defn} Forgetting the graded part by projecting out the [[nilpotent ideal]] in $O_X$ (i.e. applying the [[bosonic modality]]) yields the underlying ordinary [[smooth manifold]] $X_{red}$. One just writes $C^\infty(X)$ for the [[super algebra]] $O_X(X)$ of global sections. With the obvious morphisms of [[ringed space]] this forms the [[category]] [[SDiff]] of supermanifolds. \hypertarget{examples}{}\subsubsection*{{Examples}}\label{examples} \begin{itemize}% \item [[super Cartesian space]] \begin{itemize}% \item [[superpoint]] \begin{itemize}% \item [[odd line]] \end{itemize} \end{itemize} \end{itemize} \begin{example} \label{}\hypertarget{}{} For $E \to X$ a smooth finite-rank [[vector bundle]] the [[manifold]] $X$ equipped with the [[Grassmann algebra]] over $C^\infty(X)$ of the sections of the dual bundle \begin{displaymath} O_X(U) := \Gamma (\wedge^\bullet(E^*)) \end{displaymath} is a supermanifold. This is usually denoted by $\Pi E$. \end{example} \begin{example} \label{}\hypertarget{}{} In particular, let $\mathbb{R}^{p+q} \to \mathbb{R}^p$ be the trivial rank $q$ [[vector bundle]] on $\mathbb{R}^p$ then one writes \begin{displaymath} \mathbb{R}^{p|q} := \Pi (\mathbb{R}^{p+q} \to \mathbb{R}^p) \end{displaymath} for the corresponding supermanifold. \end{example} \hypertarget{AsLocallyRingedSpacesProperties}{}\subsubsection*{{Properties}}\label{AsLocallyRingedSpacesProperties} \begin{theorem} \label{BatchelorTheorem}\hypertarget{BatchelorTheorem}{} \textbf{(Batchelor's theorem)} Every supermanifold is [[isomorphism|isomorphic]] to one of the form $\Pi E$ where $E$ is an ordinary smooth [[vector bundle]]. \end{theorem} \begin{remark} \label{}\hypertarget{}{} Nevertherless, the category of supermanifolds is far from being [[equivalence of categories|equivalent]] to that of [[vector bundles]]: a morphism of vector bundles translates to a morphism of supermanifolds that is strictly homogeneous in degrees, while a general morphism of supermanifolds need not be of this form. \end{remark} But we have the following useful characterization of morphisms of supermanifolds: \begin{theorem} \label{MorphismsOfSupermanifoldsByAlgebras}\hypertarget{MorphismsOfSupermanifoldsByAlgebras}{} \begin{itemize}% \item There is a [[natural bijection]] \begin{displaymath} SDiff(X,Y) \simeq SAlgebras(C^\infty(Y), C^\infty(X)), \end{displaymath} so the contravariant embedding of supermanifolds into superalgebra is a [[full and faithful functor]]. \item Composition with the standard coordinate functions on $\mathbb{R}^{p|q}$ yields an [[isomorphism]] \begin{displaymath} SDiff(X, \mathbb{R}^{p|q}) \simeq \underbrace{ (C^\infty(X)^{ev} \times \cdots \times C^\infty(X)^{ev})}_{p\; times} \times \underbrace{ (C^\infty(X)^{odd} \times \cdots \times C^\infty(X)^{odd})}_{q\; times} \end{displaymath} \end{itemize} \end{theorem} \begin{proof} The first statement is a direct extension of the classical fact that [[smooth manifolds embed into formal duals of R-algebras]]. \end{proof} \hypertarget{ModeledOnGrassmannAlgebra}{}\subsection*{{As manifolds modeled on Grassman algebras}}\label{ModeledOnGrassmannAlgebra} We discuss a desription of supermanifolds that goes back to (\hyperlink{DeWitt92}{DeWitt 92}) and (\hyperlink{Rogers}{Rogers}). (\ldots{}) \hypertarget{OverSuperpoints}{}\subsection*{{As manifolds over the base topos on superpoints}}\label{OverSuperpoints} Let $SuperPoint$ be the [[category]] of [[superpoint]]s. And $Sh(SuperPoint) = PSh(SuperPoint)$ its [[presheaf topos]]. We discuss a definition of supermanifolds that characterizes them, roughly, as manifolds over this [[base topos]]. See (\hyperlink{Sachse}{Sachse}) and the references at [[super ∞-groupoid]]. See also \href{http://theoreticalatlas.wordpress.com/2013/07/26/john-huerta-supermanifolds/}{this post} at Theoretical Atlas. \hypertarget{definition_3}{}\subsubsection*{{Definition}}\label{definition_3} \begin{defn} \label{}\hypertarget{}{} Let \begin{displaymath} SuperSet := Sh(SuperPoint) \end{displaymath} be the [[sheaf topos]] over [[superpoints]]. Let \begin{displaymath} \mathbb{R} \in Ring(SuperSet) \end{displaymath} be the canonical [[continuum]] [[real line]] under the restricted [[Yoneda embedding]] of supermanifolds and equipped with its canonical internal algebra structure, hence by prop. \ref{MorphismsOfSupermanifoldsByAlgebras} the presheaf of algebras which sends a Grassmann algebra to its even subalgebra, as discussed at [[superalgebra]]. \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{superdomain} is an open subfunctor (\ldots{}) of a [[locally convex vector space|locally convex]] $\mathbb{K}$-module. \end{defn} This appears as (\hyperlink{Sachse}{Sachse, def. 4.6}). We now want to describe supermanifolds as [[manifold]]s in $SuperSet$ modeled on superdomains. Write [[SmoothMfd]] for the [[category]] of ordinary [[smooth manifold]]s. \begin{defn} \label{SupermanifoldOverSuperpoint}\hypertarget{SupermanifoldOverSuperpoint}{} A \emph{supermanifold} is a functor $X : SuperPoint^{op} \to SmoothMfd$ equipped with an equivalence class of \hyperlink{}{supersmooth atlases}. A [[morphism]] of supermanifolds is a [[natural transformation]] $f : X \to X'$, such that for each pair of [[chart]]s $u : U \to X$ and $u' : U' \to X'$ the [[pullback]] \begin{displaymath} \itexarray{ U \times_{X'} U' &&\stackrel{p'}{\to}&& U' \\ {}^{\mathllap{p_1}}\downarrow & & && \downarrow^{\mathrlap{u'}} \\ U &\stackrel{u}{\to}& X &\stackrel{f}{\to}& X' } \end{displaymath} can be equipped with the structture of a \hyperlink{}{Banach superdomain} such that $p_1$ and $p_2$ are supersmooth (\ldots{}) \end{defn} This appears as (\hyperlink{Sachse}{Sachse, def. 4.13, 4.14}). \hypertarget{properties_2}{}\subsubsection*{{Properties}}\label{properties_2} \begin{prop} \label{}\hypertarget{}{} The categories of supermanifolds defined as locally ringed spaces, def. \ref{SupermanifoldLocallyRingedSpace} and as manifolds over superpoints, def. \ref{SupermanifoldOverSuperpoint} are [[equivalence of categories|equivalent]]. \end{prop} This appears as (\hyperlink{Sachse}{Sachse, theorem 5.1}). See section 5.2 there for a discussion of the relation to the \hyperlink{ModeledOnGrassmannAlgebra}{DeWitt-definition}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[super-scheme]], [[spectral super-scheme]] \item [[integration over supermanifolds]] \item [[super vector bundle]] \item [[complex supermanifold]], [[super Riemann surface]] \item [[superconnection]] \item [[superdifferential form]] \item [[superalgebra]], [[smooth superalgebra]] \item [[NQ-supermanifold]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} A brief survey is in \begin{itemize}% \item [[Henning Hohnhold]], [[Stephan Stolz]], [[Peter Teichner]], \emph{Super manifolds: an incomplete survey}, Bulletin of the Manifold Atlas (2011) 1--6 (\href{http://people.mpim-bonn.mpg.de/teichner/Papers/Survey-Journal.pdf}{pdf}) \end{itemize} Discussion with an eye towards [[supergravity]] is in \begin{itemize}% \item [[Leonardo Castellani]], [[Riccardo D'Auria]], [[Pietro Fré]], section II.2.4 of \emph{[[Supergravity and Superstrings - A Geometric Perspective]]}, World Scientific (1991) \end{itemize} Discussion with an eye on [[integration over supermanifolds]] is in \begin{itemize}% \item [[Edward Witten]], \emph{Notes On Supermanifolds and Integration} (\href{http://arxiv.org/abs/1209.2199}{arXiv:1209.2199}) \end{itemize} Global properties are discussed in \begin{itemize}% \item [[Louis Crane]], Jeffrey M. Rabin, \emph{Global properties of supermanifolds}, Comm. Math. Phys. Volume 100, Number 1 (1985), 141-160. (\href{http://projecteuclid.org/euclid.cmp/1103943340}{Euclid}) \end{itemize} \hypertarget{as_locally_ringed_spaces_2}{}\subsubsection*{{As locally ringed spaces}}\label{as_locally_ringed_spaces_2} \begin{itemize}% \item [[Felix Berezin]], D. A. Letes, \emph{Supermanifolds}, (Russian) Dokl. Akad. Nauk SSSR \textbf{224} (1975), no. 3, 505--508; English transl.: Soviet Math. Dokl. \textbf{16} (1975), no. 5, 1218--1222 (1976). \item I. L. Buchbinder, S. M. Kuzenko, \emph{Ideas and methods of supersymmetry and supergravity; or A walk through superspace} \end{itemize} A more general variant of this in the spirit of [[locally algebra-ed topos]]es is in \begin{itemize}% \item Alexander Alldridge, \emph{A convenient category of supermanifolds} (\href{http://arxiv.org/abs/1109.3161}{arXiv:1109.3161}) \end{itemize} \hypertarget{ReferencesOverSuperpoints}{}\subsubsection*{{As manifolds over superpoints}}\label{ReferencesOverSuperpoints} The observation that the study of super-structures in mathematics is usefully regarded as taking place over the [[base topos]] on the [[site]] of [[super points]] has been made around 1984 in \begin{itemize}% \item [[Albert Schwarz]], \emph{On the definition of superspace}, Teoret. Mat. Fiz. (1984) Volume 60, Number 1, Pages 37--42, (\href{http://www.mathnet.ru/links/b12306f831b8c37d32d5ba8511d60c93/tmf5111.pdf}{russian original pdf}) \item [[Alexander Voronov]], \emph{Maps of supermanifolds} , Teoret. Mat. Fiz. (1984) Volume 60, Number 1, Pages 43--48 \end{itemize} and in \begin{itemize}% \item V. Molotkov., \emph{Infinite-dimensional $\mathbb{Z}_2^k$-supermanifolds} , ICTP preprints, IC/84/183, 1984. \end{itemize} A summary/review is in the appendix of \begin{itemize}% \item Anatoly Konechny and [[Albert Schwarz]], \emph{On $(k \oplus l|q)$-dimensional supermanifolds}, in: [[Julius Wess]], V. Akulov (eds.) \emph{Supersymmetry and Quantum Field Theory} (D. Volkov memorial volume) Springer-Verlag, 1998 , Lecture Notes in Physics, 509 (\href{http://arxiv.org/abs/hep-th/9706003}{arXiv:hep-th/9706003}) \emph{Theory of $(k \oplus l|q)$-dimensional supermanifolds} Sel. math., New ser. 6 (2000) 471 - 486 \item [[Albert Schwarz]], I- Shapiro, \emph{Supergeometry and Arithmetic Geometry} (\href{http://arxiv.org/abs/hep-th/0605119}{arXiv:hep-th/0605119}) \end{itemize} A review with more emphasis on the relevant [[category theory]]/[[topos theory]] is in \begin{itemize}% \item [[Christoph Sachse]], \emph{A Categorical Formulation of Superalgebra and Supergeometry} (\href{http://arxiv.org/abs/0802.4067}{arXiv:0802.4067}) \end{itemize} The site of formal duals not just to [[Grassmann algebras]] but to all super-[[infinitesimally thickened points]] is discussed in (\hyperlink{KonechnySchwarz}{Konechny-Schwarz}) above and also in \begin{itemize}% \item L. Balduzzi, C. Carmeli, R. Fioresi, \emph{The local functors of points of Supermanifolds} (\href{http://arxiv.org/abs/0908.1872}{arXiv:0908.1872}) \end{itemize} \hypertarget{as_manifolds_modelled_on_grassmann_algebras}{}\subsubsection*{{As manifolds modelled on Grassmann algebras}}\label{as_manifolds_modelled_on_grassmann_algebras} \begin{itemize}% \item [[Bryce DeWitt]], \emph{Supermanifolds}, Cambridge Monographs on Mathematical Physics, 1984 \item [[Alice Rogers]], Supermanifolds: Theory and Applications, World Scientific, (2007) \end{itemize} Alice Rogers claims, in Chapter 1, that the smooth-manifold-of-(infinite-dimensional)-Grassmann-algebras approach (the ``concrete approach'') is identical to the sheaf-of-ringed-spaces approach (the ``algebro-geometric'' approach) and that this equivalence is shown in Chapter 8. DeWitt seems unsure of this, but is writing more than 20 years earlier, before the ringed-space approach has been fully developed. \hypertarget{other}{}\subsubsection*{{Other}}\label{other} \begin{itemize}% \item [[Yuri Manin]], \emph{Topics in noncommutative geometry}, Princeton Univ. Press 1991. \item [[Pierre Deligne]], P. Etingof, [[Daniel Freed]], L. Jeffrey, D. Kazhdan, J. Morgan, D.R. Morrison and [[Edward Witten]] (eds.) \emph{[[Quantum Fields and Strings]], A course for mathematicians}, 2 vols. Amer. Math. Soc. Providence 1999. (\href{http://www.math.ias.edu/qft}{web version}) \item V. S. Varadarajan, \emph{Supersymmetry for mathematicians: an introduction}, AMS and Courant Institute, 2004. \item [[Alberto S. Cattaneo]], Florian Schaetz, \emph{Introduction to supergeometry}, \href{http://arxiv.org/abs/1011.3401}{arxiv/1011.3401} \end{itemize} There are many books in [[physics]] on [[supersymmetry]] (most well known is by Wess and Barger from 1992), but they emphasise more on the [[supersymmetry algebra]]s rather than on (the superspace and) \emph{supermanifolds}. They should therefore rather be listed under entry [[supersymmetry]]. See also \href{http://www.math.uni-hamburg.de/home/sachse/handoutbatchelor.pdf}{pdf} [[!redirects super manifold]] [[!redirects supermanifolds]] \end{document}