\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{suspension object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{suspension_functor}{Suspension functor}\dotfill \pageref*{suspension_functor} \linebreak \noindent\hyperlink{as_an_infinity1functor}{As an (infinity,1)-functor}\dotfill \pageref*{as_an_infinity1functor} \linebreak \noindent\hyperlink{as_an_ordinary_functor}{As an ordinary functor}\dotfill \pageref*{as_an_ordinary_functor} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} In a [[(∞,1)-category]] $C$ admitting a [[final object]] ${*}$, for any object $X$ its \textbf{suspension object} $\Sigma X$ is the [[homotopy pullback|homotopy pushout]] \begin{displaymath} \itexarray{ X &\to& {*} \\ \downarrow && \downarrow \\ {*} &\to& \Sigma X } \,, \end{displaymath} This is the [[mapping cone]] of the terminal map $X \to {*}$. See there for more details. This concept is dual to that of [[loop space object]]. \hypertarget{suspension_functor}{}\subsection*{{Suspension functor}}\label{suspension_functor} \hypertarget{as_an_infinity1functor}{}\subsubsection*{{As an (infinity,1)-functor}}\label{as_an_infinity1functor} Let $C$ be a [[pointed (infinity,1)-category]]. Write $M^\Sigma$ for the [[(infinity,1)-category]] of [[pushout|cocartesian squares]] of the form \begin{displaymath} \itexarray{ X &\to& {*} \\ \downarrow && \downarrow \\ {*} &\to& Y } \,, \end{displaymath} where $X$ and $Y$ are [[objects]] of $C$. Supposing that $C$ admits [[cofibres]] of all [[morphisms]], then one sees that the functor $M^\Sigma \to C$ given by evaluation at the initial vertex ($X$) is a [[trivial fibration]]. Hence it admits a [[section]] $s : C \to M^\Sigma$. Then the \textbf{suspension functor} $\Sigma_C : C \to C$ is the [[composite]] of $s$ with the functor $M^\Sigma \to C$ given by evaluating at the final vertex ($Y$). $\Sigma_C$ is [[left adjoint]] to the [[loop space functor]] $\Omega_C$. For $X$ a pointed object of a [[Grothendieck (∞,1)-topos]] ${\mathcal{H}}$, the suspension object $\Sigma X$ is homotopy equivalent to $B{\mathbb{Z}}\wedge X$, the smash product by the classifing space of the discrete group of integers. We outline a proof below. For $X$ a pointed object of a Grothendieck (∞,1)-topos ${\mathcal{H}}$, its \emph{reduced free group}, denoted by $F[X]$, is the left adjoint to the functor $\Omega {\mathbf{B}}:Grp(\mathcal{H})\to \mathcal{H}_*$ which sends a [[groupoid object in an (∞,1)-category|group object internal]] to ${\mathcal{H}}$ to the loop space of its delooping object. \begin{prop} \label{ConstructionOfFreeGroup}\hypertarget{ConstructionOfFreeGroup}{} For $X$ a pointed object of a Grothendieck (∞,1)-topos ${\mathcal{H}}$, there is a natural equivalence ${\mathbf{B}}F[X]\simeq \Sigma X$. \end{prop} \begin{proof} This is due to the adjunction $(\Sigma \vdash \Omega):\mathcal{H}_*\leftrightarrows\mathcal{H}_*$ between suspending and looping and the the adjunction $(\Omega \vdash {\mathbf{B}}):PathConn(\mathcal{H}_*)\leftrightarrows Grp(\mathcal{H})$ between looping and delooping. Indeed, for any group object $H$, the above-mentioned adjunctions imply the following natural equivalences: \begin{displaymath} \begin{aligned} Grp({\mathcal{H}})(\Omega \Sigma X, H) & \simeq PathConn({\mathcal{H}}_*)(\Sigma X, {\mathbf{B}}H) \\ & \simeq PathConn({\mathcal{H}}_*)(X, \Omega{\mathbf{B}}H) \,, \end{aligned} \end{displaymath} Hence $\Omega \Sigma X$ has the universal property of the reduced free group. Delooping gives the required result. \end{proof} The [[(∞,1)-category]] $Grp(\mathcal{H})$ of group objects internal ${\mathcal{H}}$ is tensored over ${\mathcal{H}}_*$; in particular, for $G$ a group object and $X$ a pointed object, we can form the tensor product $X\otimes G$, which is a group object. Explicitly, this tensor product is required to satisfy a homotopy equivalence $Grp({\mathcal{H}})(\Omega (X\otimes G, H)\simeq PathConn({\mathcal{H}}_*)(X, Grp({\mathcal{H}})(G, H))$, natural in group objects $H$. \begin{prop} \label{ConstructionOfTensorProduct}\hypertarget{ConstructionOfTensorProduct}{} For $X$ a pointed object and $G$ a group object of a Grothendieck (∞,1)-topos ${\mathcal{H}}$, there is a natural equivalence ${\mathbf{B}}(X\otimes G)\simeq X\wedge {\mathbf{B}}G$. \end{prop} \begin{proof} This is due to the adjunction $(\Omega \vdash {\mathbf{B}}):PathConn(\mathcal{H}_*)\leftrightarrows Grp(\mathcal{H})$ between looping and delooping and the [[internal hom]] adjunction. Indeed, for any group object $H$, the above-mentioned adjunctions gives the following natural equivalences: \begin{displaymath} \begin{aligned} Grp({\mathcal{H}})(\Omega (X\wedge {\mathbf{B}}G), H) & \simeq PathConn({\mathcal{H}}_*)(X\wedge {\mathbf{B}}G, {\mathbf{B}}H) \\ & \simeq PathConn({\mathcal{H}}_*)(X, PathConn({\mathcal{H}}_*)({\mathbf{B}}G, {\mathbf{B}}H)) \\ & \simeq PathConn({\mathcal{H}}_*)(X, Grp({\mathcal{H}})(G, H)) \,, \end{aligned} \end{displaymath} Hence $\Omega (X\wedge {\mathbf{B}}G)$ has the universal property of the tensor product. Delooping gives the required result. \end{proof} \begin{lemma} \label{FreeGroupAsTensor}\hypertarget{FreeGroupAsTensor}{} For $X$ a pointed object of a Grothendieck (∞,1)-topos ${\mathcal{H}}$, there is a natural equivalence $F[X]\simeq X\otimes Z$, where $Z$ is the group object whose delooping object is $B {\mathbb{Z}}$, the classifying space of the discrete group of integers. \end{lemma} \begin{proof} Since ${\mathcal{H}}$ is a Grothedieck $(\infty,1)$-topos, the $(\infty,1)$-functor $*\to {\mathbf{B}}-:Group(\mathcal{H})\to Func(\Delta^1,\mathcal{H})$ which sends a group object to the map from the terminal object to its delooping object is a $(\infty,1)$-categorial equivalence onto its image, which is the full subcategory of $Func(\Delta^1,\mathcal{H})$ spanned by the effective epimorphisms from the terminal object. Hence, for $H$ a group object, we have \begin{displaymath} \begin{aligned} Grp(\mathcal{H})(Z,H) & \simeq Func(\Delta^1,{\mathcal{H}})(*\to B{\mathbb{Z}},*\to {\mathbf{B}}H) \\ & \simeq {\mathcal{H}}_*(B{\mathbb{Z}},{\mathbf{B}}H) \,, \end{aligned} \end{displaymath} This latter based mapping object is equivalent to the based object of deloopable maps from ${\mathbb{Z}}$ to $\Omega{\mathbf{B}}H$, which is just $\Omega{\mathbf{B}}H$, since ${\mathbb{Z}}$ is the discrete free group on one generator. Hence, there are the following natural equivalences: \begin{displaymath} \begin{aligned} Grp({\mathcal{H}})(F[X], H) & \simeq PathConn({\mathcal{H}}_*)(X, \Omega{\mathbf{B}}H) \\ & \simeq PathConn({\mathcal{H}}_*)(X, Grp(Z, H) \,, \end{aligned} \end{displaymath} Therefore $F[X]$ has the universal property of the tensor product $X\otimes Z$. The required natural equivalence follows by abstract nonsense. \end{proof} \begin{theorem} \label{SuspendingAsSmashProd}\hypertarget{SuspendingAsSmashProd}{} For $X$ a pointed object of a Grothendieck (∞,1)-topos ${\mathcal{H}}$, there is a natural equivalence $\Sigma X\simeq B{\mathbb{Z}}\wedge X$. \end{theorem} \begin{proof} Deloop the natural equivalence in Lemma \ref{FreeGroupAsTensor} to obtain the natural equivalence ${\mathbf{B}}F[X]\simeq {\mathbf{B}}(X\otimes Z)$. By propositions \ref{ConstructionOfFreeGroup} and \ref{ConstructionOfTensorProduct}, this gives the required natural equivalence. \end{proof} \hypertarget{as_an_ordinary_functor}{}\subsubsection*{{As an ordinary functor}}\label{as_an_ordinary_functor} Let $C$ be a [[category]] admitting small [[colimits]]. Let $\Phi$ be a [[graded monoid]] in the [[category]] of [[groups]] and $F : C \to C$ a $\Phi$-symmetric [[endofunctor]] of $C$ that commutes with small [[colimits]]. Let $Spect_F^{\Phi}(C)$ denote the [[category]] of $\Phi$-symmetric $F$-[[spectrum objects]] in $C$. Following \hyperlink{Ayoub}{Ayoub}, the [[evaluation]] functor \begin{displaymath} Ev^n : Spect_F^{\Phi}(C) \to C, \end{displaymath} which ``evaluates'' a symmetric spectrum at its $n$th component, admits under these assumptions a [[left adjoint]] \begin{displaymath} Sus^n : C \to \Spect_F^\Phi(C) \end{displaymath} called the $n$th \textbf{suspension functor}, more commonly denoted $\Sigma_C^{\infty-n}$. When $C$ is [[symmetric monoidal category|symmetric monoidal]], and in the case $\Phi = \Sigma$ and $F = T \otimes -$ for some object $T$, there is an induced [[symmetric monoidal structure]] on $Spect^\Sigma_T(C)$ as described at [[symmetric monoidal structure on spectrum objects]]. \textbf{Proposition.} One has \begin{displaymath} Sus^p_T(X) \otimes Sus^q_T(Y) \simeq Sus^{p+q}_T(X \otimes Y) \end{displaymath} for all $X,Y \in C$. In particular, $Sus = Sus^0 : C \to \Spect^\Sigma_T(C)$ is a [[symmetric monoidal functor]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In [[Top]], this is the [[reduced suspension]] of a space. \item In a [[category of chain complexes]] the [[suspension of a chain complex]] is given by shifting the degrees of the chain complex up by one. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[loop space object]], [[free loop space object]], \begin{itemize}% \item [[delooping]] \item [[loop space]], [[free loop space]], [[derived loop space]] \end{itemize} \item \textbf{suspension object} \begin{itemize}% \item [[suspension]], [[reduced suspension]] \end{itemize} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} A detailed treatment of the 1-categorical case is in the last chapter of \begin{itemize}% \item [[Joseph Ayoub]], \emph{Les six op\'e{}rations de Grothendieck et le formalisme des cycles \'e{}vanescents dans le monde motivique, I}. Ast\'e{}risque, Vol. 314 (2008). Soci\'e{}t\'e{} Math\'e{}matique de France. (\href{http://user.math.uzh.ch/ayoub/PDF-Files/THESE.PDF}{pdf}) \end{itemize} [[!redirects suspension object]] [[!redirects suspension objects]] \end{document}