\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{symmetric algebra} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebra}{}\paragraph*{{Algebra}}\label{algebra} [[!include higher algebra - contents]] \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{explicit_definition}{Explicit definition}\dotfill \pageref*{explicit_definition} \linebreak \noindent\hyperlink{for_vector_spaces}{For vector spaces}\dotfill \pageref*{for_vector_spaces} \linebreak \noindent\hyperlink{in_general}{In general}\dotfill \pageref*{in_general} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The \textbf{symmetric algebra} $S V$ of a vector space is the [[free object|free]] [[commutative algebra]] over $V$. This construction generalizes to [[group representations]], [[chain complexes]], [[vector bundles]], [[coherent sheaves]], and indeed objects in any [[symmetric monoidal category|symmetric monoidal]] [[linear category|linear categories]] with enough [[colimit|colimits]], where the tensor product distributes over those colimits (as in a [[2-rig]]). \hypertarget{explicit_definition}{}\subsection*{{Explicit definition}}\label{explicit_definition} We begin with the construction for vector spaces and then sketch how to generalize it. \hypertarget{for_vector_spaces}{}\subsubsection*{{For vector spaces}}\label{for_vector_spaces} Suppose $V$ is a [[vector space]] over a [[field]] $K$. Then the \textbf{symmetric algebra} $S V$ is generated by the elements of $V$ using these operations: \begin{itemize}% \item addition and scalar multiplication \item an associative binary operation $\cdot$ \end{itemize} subject to these identities: \begin{itemize}% \item the identities necessary for $S V$ to be an [[associative algebra]] \item the identity $v \cdot w = w \cdot v$ for all $v \in V$. \end{itemize} It then follows that $S V$ is a [[graded algebra]] where $S^p V$ is spanned by $p$-fold products, that is, elements of the form \begin{displaymath} v_1 \cdot \cdots \cdot v_p \end{displaymath} where $v_1, \dots, v_p \in V$. Clearly $S V$ is also [[commutative algebra|commutative]]. The symmetric algebra of $V$ is also denoted $Sym V$. It is also called the \textbf{polynomial algebra}. However we should carefully distinguish between polynomials \emph{in} the elements of $V$, which form the algebra $S V$, and polynomial functions \emph{on} the vector space $V$, which form the algebra $S(V^*)$. In quantum physics, a similar construction for Hilbert spaces is known as the [[Fock space]]. \hypertarget{in_general}{}\subsubsection*{{In general}}\label{in_general} More generally, suppose $C$ is any [[symmetric monoidal category]] and $V \in C$ is any object. Then we can form the [[tensor power|tensor powers]] $V^{\otimes n}$. If $C$ has countable coproducts we can form the [[coproduct]] \begin{displaymath} T V = \bigoplus_{n \ge 0} V^{\otimes n} \end{displaymath} (which we write here as a [[direct sum]]), and if the tensor product distributes over these coproducts, $T V$ becomes a [[monoid]] object in $C$, with multiplication given by the obvious maps \begin{displaymath} V^{\otimes p} \otimes V^{\otimes q} \to V^{\otimes (p+q)} \end{displaymath} This monoid object is called the [[tensor algebra]] of $V$. The [[symmetric group]] $S_n$ acts on $V^{\otimes n}$, and if $C$ is a [[linear category]] over a [[field]] of [[characteristic]] zero, then we can form the symmetrization map \begin{displaymath} p_A : V^{\otimes n} \to V^{\otimes n} \end{displaymath} given by \begin{displaymath} p_A = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma \end{displaymath} This is an [[idempotent]], so if idempotents split in $C$ we can form its [[cokernel]], called the $n$th \textbf{symmetric tensor power} or \textbf{symmetric power} $S^n V$. The coproduct \begin{displaymath} S V = \bigoplus_{n \ge 0} S^n V \end{displaymath} becomes a monoid object called the \textbf{symmetric algebra} of $V$. If $C$ is a more general sort of symmetric monoidal category, then we need a different construction of $S^n V$. For example, if $C$ is a symmetric monoidal category with finite colimits, we can simply define $S^n V$ to be the [[coequalizer]] of the action of the symmetric group $S_n$ on $V^{\otimes n}$. And if $C$ also has countable coproducts, we can define \begin{displaymath} S V = \coprod_{n \ge 0} S^n V \end{displaymath} Then, if the tensor product distributes over these colimits (as in a [[2-rig]]), $S V$ will become a [[internalization|commutative monoid object]] in $C$. In fact, it will be the \emph{free} commutative monoid object on $V$, meaning that any morphism in $C$ \begin{displaymath} V \to A \, , \end{displaymath} where $A$ is a commutative monoid, factors uniquely as the obvious morphism \begin{displaymath} V \to S V \end{displaymath} followed by a morphism of commutative monoids \begin{displaymath} S V \to A \, , \end{displaymath} as in this commutative triangle: \begin{displaymath} \array { & & S V \\ & \nearrow & & \searrow \\ V & & \longrightarrow & & A } \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{SymmetricAlgebraInCoChainComplexes}\hypertarget{SymmetricAlgebraInCoChainComplexes}{} \textbf{(symmetric algebra in [[chain complexes]] is [[differential graded-commutative algebra]])} Let the ambient [[category]] be the [[category of cochain complexes]] over a [[ground field]] of [[characteristic zero]], regarded as a [[symmetric monoidal category]] via the [[tensor product of chain complexes]]. Then for $(V^\bullet, d)$ a [[cochain complex]], the symmetric algebra \begin{displaymath} Sym\left( (V^\bullet, d) \right) \;\in\; CMon( Ch^\bullet, \otimes ) \end{displaymath} is the [[differential graded-commutative algebra]] whose underlying [[graded algebra]] is the [[graded-commutative algebra]] on $V^\bullet$, and whose [[differential]] is the original $d$, extended, uniquely, as a graded [[derivation]] of degree +1. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \begin{prop} \label{CochainCohomologyOfSymmetricAlgebraOnCochainComplex}\hypertarget{CochainCohomologyOfSymmetricAlgebraOnCochainComplex}{} Let the ambient [[category]] be the [[category of cochain complexes]] over a [[ground field]] of [[characteristic zero]], regarded as a [[symmetric monoidal category]] via the [[tensor product of chain complexes]] and consider the [[differential graded-commutative algebra]] $Sym(V^\bullet,d)$ free on a cochain complex $(V^\bullet,d)$ from example \ref{SymmetricAlgebraInCoChainComplexes}. Then the [[cochain cohomology]] (of the [[forgetful functor|underlying]] cochain complex) of $Sym(V^\bullet,d)$ is the graded symmetric algebra on the [[cochain cohomology]] of $(V^\bullet,d)$: \begin{displaymath} H^\bullet\left( Sym\left(V^\bullet,d\right) \right) \;\simeq\; Sym\left( H^\bullet(V^\bullet,d) \right) \,. \end{displaymath} \end{prop} See also \href{https://mathoverflow.net/a/91243/381}{this MO discussion}. \begin{proof} We have the following sequence of [[linear isomorphisms]]: \begin{displaymath} \begin{aligned} H^\bullet \left( Sym( V^\bullet,d ) \right) & \simeq H^\bullet \left( \underset{k \in \mathbb{N}}{\oplus} \left( (V^\bullet,d)^{\otimes_k} \right)^{\Sigma_k} \right) \\ & \simeq \underset{k \in \mathbb{N}}{\oplus} H^\bullet\left( \left( (V^\bullet,d)^{\otimes_k}\right)^{\Sigma_k} \right) \\ & \simeq \underset{k \in \mathbb{N}}{\oplus} H^\bullet\left( \left( (V^\bullet,d)^{\otimes_k}\right) \right)^{\Sigma_k} \\ & \simeq \underset{k \in \mathbb{N}}{\oplus} \left( H^\bullet\left( V^\bullet,d \right)^{\otimes_k} \right)^{\Sigma_k} \\ & = Sym\left( H^\bullet(V^\bullet,d)\right) \end{aligned} \end{displaymath} Here: \begin{enumerate}% \item the first step uses that, while \emph{a priori} the symmetric algebra is equivalently the [[quotient]] of the [[tensor algebra]] by the [[symmetric group]] [[action]], in [[characteristic zero]] this is equivalently [[invariants]] of the [[symmetric group]] [[action]], because here $V^G \to V \to V_G$ is a [[linear isomorphism]]; \item the second step uses that [[cochain cohomology]] respects [[direct sums]]; \item the third step uses that for [[finite groups]] in [[characteristic zero]], taking [[invariants]] is compatible with passing to [[cochain cohomology]] (\href{invariant#TakingInvariantsForFiniteGroupCommutesWithTaingHomologyInCharZero}{this prop.}): \item the fourth step is the [[Künneth theorem]] for [[ordinary homology]] over a [[field]] (\href{Künneth+theorem#InordinaryHomology}{this prop.}). \end{enumerate} \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[symmetric algebra spectrum]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Stacks Project]], \href{http://stacks.math.columbia.edu/tag/00DM}{Tag 00DM}. \item [[Bourbaki]], \emph{Alg\`e{}bre}, chap. III, \S{} 6. \end{itemize} The [[symmetric algebra spectrum]] of the [[sphere spectrum]], and its structure as a [[Hopf ring spectrum]] is discussed in \begin{itemize}% \item [[Neil Strickland]], [[Paul Turner]], \emph{Rational Morava $E$-theory and $D S^0$}, Topology Volume 36, Issue 1, January 1997, Pages 137-151 (\href{http://hopf.math.purdue.edu/Strickland-PTurner/rme.pdf}{pdf}) \end{itemize} [[!redirects symmetric algebras]] [[!redirects symmetric power]] [[!redirects symmetric powers]] [[!redirects symmetric tensor power]] [[!redirects symmetric tensor powers]] [[!redirects symmetric product]] [[!redirects symmetric products]] [[!redirects symmetric tensor algebra]] [[!redirects symmetric tensor algebras]] \end{document}