\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{symmetry protected trivial order} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{symmetryprotected_trivial_order}{}\section*{{Symmetry-protected trivial order}}\label{symmetryprotected_trivial_order} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{examples_of_spt_order}{Examples of SPT order}\dotfill \pageref*{examples_of_spt_order} \linebreak \noindent\hyperlink{group_cohomology_theory_for_spt_phases}{Group cohomology theory for SPT phases}\dotfill \pageref*{group_cohomology_theory_for_spt_phases} \linebreak \noindent\hyperlink{spt_phases_in_free_fermion_systems}{SPT phases in free fermion systems}\dotfill \pageref*{spt_phases_in_free_fermion_systems} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{reviews}{Reviews}\dotfill \pageref*{reviews} \linebreak \noindent\hyperlink{classification_for_bosonic_spt_phases}{Classification for bosonic SPT phases}\dotfill \pageref*{classification_for_bosonic_spt_phases} \linebreak \noindent\hyperlink{classification_for_free_fermion_spt_phases}{Classification for free fermion SPT phases}\dotfill \pageref*{classification_for_free_fermion_spt_phases} \linebreak \noindent\hyperlink{early_discovery_articles}{Early discovery articles}\dotfill \pageref*{early_discovery_articles} \linebreak \noindent\hyperlink{other_articles}{Other articles}\dotfill \pageref*{other_articles} \linebreak \noindent\hyperlink{conference_and_seminar_cycles}{Conference and seminar cycles}\dotfill \pageref*{conference_and_seminar_cycles} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Symmetry Protected Trivial order (SPT order)} (also known as \textbf{Symmetry Protected Topological order}) is a new kind of order in zero-temperature [[solid state physics|states of matter]] that have a [[symmetry]] and a finite energy gap. The SPT order has the following defining properties: \begin{enumerate}% \item distinct SPT states with a given symmetry cannot be smoothly deformed into each other without a [[phase transition]], if the deformation preserves the symmetry. \item however, they all can be smoothly deformed into the same trivial product state without a phase transition, if the symmetry is broken during the deformation. \end{enumerate} Using the notion of quantum entanglement, we can say that SPT states are short-range [[entanglement|entangled states]] with a symmetry.\newline Using the notion of [[topological order]], we can say that SPT states are symmetric states with trivial [[topological order]]. \hypertarget{examples_of_spt_order}{}\subsection*{{Examples of SPT order}}\label{examples_of_spt_order} The first example of SPT order is the Haldane phase of spin-1 chain. It is a SPT phase protected by the $SO(3)$ spin [[rotation group]] symmetry. Another example of SPT order is the [[topological insulator]] of non-interacting fermions, a SPT phase protected by U(1) and time reversal symmetry. \hypertarget{group_cohomology_theory_for_spt_phases}{}\subsection*{{Group cohomology theory for SPT phases}}\label{group_cohomology_theory_for_spt_phases} Recently, it was shown that the bosonic SPT orders are described by [[group cohomology]] theory: \textbf{d+1D SPT states with on-site symmetry G are labeled by the elements in group cohomology class $H^{d+1} [G, U(1)]$.} It was also shown that the fermionic SPT orders are described by group super-cohomology theory. So the group (super-)cohomology theory may allow us to classify all SPT orders even for interacting systems, which include interacting topological insulator/superconductor. \hypertarget{spt_phases_in_free_fermion_systems}{}\subsection*{{SPT phases in free fermion systems}}\label{spt_phases_in_free_fermion_systems} Free fermion system can also have non-trivial SPT phases, such as [[topological insulator]]s and topological superconductors. Those free fermion SPT phases are classified by K-theory. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[protection from quantum corrections]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Related entries: [[TQFT]], [[topological order]], [[group cohomology]], [[entanglement]] \hypertarget{reviews}{}\paragraph*{{Reviews}}\label{reviews} \begin{itemize}% \item \href{http://en.wikipedia.org/wiki/Symmetry_protected_topological_order}{SPT order} \end{itemize} \hypertarget{classification_for_bosonic_spt_phases}{}\paragraph*{{Classification for bosonic SPT phases}}\label{classification_for_bosonic_spt_phases} Discussion via [[higher dimensional WZW models]] is in \begin{itemize}% \item Xie Chen, Zheng-Cheng Gu, Zheng-Xin Liu, [[Xiao-Gang Wen]], \emph{Symmetry protected topological orders and the group cohomology of their symmetry group}, Phys. Rev. B 87, 155114 (2013) \href{http://arxiv.org/abs/1106.4772}{arXiv:1106.4772}; A short version in Science \textbf{338}, 1604-1606 (2012) \href{http://dao.mit.edu/~wen/pub/dDSPTsht.pdf}{pdf} \end{itemize} \hypertarget{classification_for_free_fermion_spt_phases}{}\paragraph*{{Classification for free fermion SPT phases}}\label{classification_for_free_fermion_spt_phases} \begin{itemize}% \item [[Daniel S. Freed]], [[Gregory Moore|Gregory W. Moore]], \emph{Twisted equivariant matter}, Annales Henri Poincar\'e{} December 2013, Volume 14, Issue 8, pp 1927--2023 \href{http://arxiv.org/abs/1208.5055}{arxiv/1208.5055} (uses [[equivariant K-theory]]) \item Alexei Kitaev, \emph{Periodic table for topological insulators and superconductors}, Proc. L.D.Landau Memorial Conf. ``Advances in Theor. Physics'', June 22-26, 2008, Chernogolovka, Russia, \href{http://arxiv.org/abs/0901.2686}{arxiv/0901.2686} (uses [[K-homology]], [[Bott periodicity]] etc.) \end{itemize} \hypertarget{early_discovery_articles}{}\paragraph*{{Early discovery articles}}\label{early_discovery_articles} \begin{itemize}% \item Zheng-Cheng Gu, [[Xiao-Gang Wen]], Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , Phys. Rev. B80, 155131 (2009); \item Frank Pollmann, Erez Berg, Ari M. Turner, Masaki Oshikawa, Symmetry protection of topological order in one-dimensional quantum spin systems , Phys. Rev. B85, 075125 (2012). \item Xie Chen, Zheng-Xin Liu, [[Xiao-Gang Wen]], 2D symmetry protected topological orders and their protected gapless edge excitations Phys. Rev. B 84, 235141 (2011); \item Zheng-Cheng Gu, [[Xiao-Gang Wen]], \href{http://arxiv.org/abs/1201.2648}{Symmetry-protected topological orders for interacting fermions -- fermionic topological non-linear sigma-models and a group super-cohomology theory} \end{itemize} \hypertarget{other_articles}{}\paragraph*{{Other articles}}\label{other_articles} \begin{itemize}% \item Michael Levin, Zheng-Cheng Gu, Braiding statistics approach to symmetry-protected topological phases, Phys. Rev. B 86, 115109 (2012), arXiv:1202.3120. \item Yuan-Ming Lu, Ashvin Vishwanath, Theory and classification of interacting `integer' topological phases in two dimensions: A Chern-Simons approach, Phys. Rev. B 86, 125119 (2012), arXiv:1205.3156. \item Davide Gaiotto, Theo Johnson-Freyd, \emph{Symmetry protected topological phases and generalized cohomology}, \href{https://arxiv.org/abs/1712.07950}{arxiv/1712.07950} \end{itemize} \hypertarget{conference_and_seminar_cycles}{}\paragraph*{{Conference and seminar cycles}}\label{conference_and_seminar_cycles} \begin{itemize}% \item seminar in Koeln \href{http://www.thp.uni-koeln.de/trebst/Lectures/2012-TopoSeminar.html}{Topological states of matter} \item Topological Phases of Matter: Simons Center, June 10-14, 2013, videos \href{http://scgp.stonybrook.edu/archives/3464}{available} \item A. Kitaev, \emph{On the classification of short-range entangled states}, \href{http://scgp.stonybrook.edu/archives/7874}{video} \end{itemize} [[!redirects symmetry protected trivial order]] [[!redirects symmetry protected trivial orders]] [[!redirects symmetry-protected trivial order]] [[!redirects symmetry-protected trivial orders]] [[!redirects symmetry protected topological order]] [[!redirects symmetry protected topological orders]] [[!redirects symmetry-protected topological order]] [[!redirects symmetry-protected topological orders]] [[!redirects SPT order]] [[!redirects SPT orders]] [[!redirects SPT state]] [[!redirects SPT states]] [[!redirects SPT phase]] [[!redirects SPT phases]] \end{document}