\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{symplectic Lie n-algebroid} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{_symplectic_manifold}{$n=0$: symplectic manifold}\dotfill \pageref*{_symplectic_manifold} \linebreak \noindent\hyperlink{_poisson_manifold}{$n=1$: Poisson manifold}\dotfill \pageref*{_poisson_manifold} \linebreak \noindent\hyperlink{_courant_algebroid}{$n=2$: Courant algebroid}\dotfill \pageref*{_courant_algebroid} \linebreak \noindent\hyperlink{relation_to_other_concepts}{Relation to other concepts}\dotfill \pageref*{relation_to_other_concepts} \linebreak \noindent\hyperlink{to_chernsimons_theory}{To $\infty$-Chern-Simons theory}\dotfill \pageref*{to_chernsimons_theory} \linebreak \noindent\hyperlink{to_multisymplectic_geometry}{To multisymplectic geometry}\dotfill \pageref*{to_multisymplectic_geometry} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A [[Lie n-algebroid]] is \emph{symplectic} if it is equipped with a non-degenerate binary [[invariant polynomial]]. This generalizes the notion of a [[symplectic form]] on a [[symplectic manifold]], to which it reduces for $n = 0$. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \textbf{symplectic Lie $n$-algebroid} is a pair \begin{displaymath} (\mathfrak{a}, \langle -,- \rangle) \end{displaymath} consisting of \begin{itemize}% \item a [[Lie n-algebroid]] $\mathfrak{a}$; \item a binary [[invariant polynomial]] $\langle- , - \rangle$ of degree $(n+2)$ (a closed element in the shifted elements of the [[Weil algebra]] $W(\mathfrak{a})$) which is non-degenerate. \end{itemize} \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} The [[Chern-Simons element]] that witnesses this transgression is the Lagrangian of the corresponding [[AKSZ theory]] [[sigma-model]] with $\mathfrak{a}$ as its target space and the invariant polynomial $\langle -,- \rangle$ as the ([[curvature]] of) its background [[gauge field]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{_symplectic_manifold}{}\subsubsection*{{$n=0$: symplectic manifold}}\label{_symplectic_manifold} A 0-Lie algebroid is just a [[smooth manifold]] $X$. Its [[Chevalley-Eilenberg algebra]] is the algebra of smooth functions on $X$ \begin{displaymath} CE(X) = C^\infty(X) \,. \end{displaymath} The [[Weil algebra]] of $X$ is \begin{displaymath} W(X) = \Omega^\bullet(X) \end{displaymath} the [[de Rham complex|de Rham algebra]] of $X$. A degree 2-[[invariant polynomial]] on $X$ is therefore a non-degenerate closed [[differential form|2-form]] $\omega \in \Omega^2(X)$, a [[symplectic manifold|symplectic 2-form]]. A [[symplectic manifold]], being a pair \begin{displaymath} (X,\;\; \omega) \end{displaymath} consisting of a [[smooth manifold]] $X$ and a symplectic 2-form $\omega$, is a symplectic Lie 0-algebroid. \hypertarget{_poisson_manifold}{}\subsubsection*{{$n=1$: Poisson manifold}}\label{_poisson_manifold} For a [[Poisson manifold]] $X$ with Poisson bivector $\pi \in \Gamma(T X) \wedge \Gamma(T X)$ the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{a})$ of the corresponding [[Poisson Lie algebroid]] \begin{displaymath} \mathfrak{a} := \mathfrak{P}(X,\pi) \end{displaymath} is that of multi-vector fields on $X$, equipped with the differential $d_{CE(\mathfrak{a})} = [\pi, -]_{Sch}$ given by the [[Schouten bracket]]. If we work locally in coordinates then $CE(\mathfrak{a})$ is generated from degree 0 elements $x^i$ and degree 1 elements $\partial_i$. The differential is \begin{displaymath} d_{CE(\mathfrak{a})} = [\pi, -]_{Sch} \,. \end{displaymath} The Poisson tensor is $\nu := \pi = \pi^{i j} \partial_i \wedge \partial_j$ and that this is a [[∞-Lie algebra cohomology|Lie algebroid cocycle]] is the fact that \begin{displaymath} d_{CE(\mathfrak{a})} \pi = [\pi,\pi]_{Sch} = 0 \,. \end{displaymath} By definition the [[Weil algebra]] $W(\mathfrak{a})$ is generated from the $x^i$, the $\partial_i$ and their shifted partners $\mathbf{d}x^i$ and $\mathbf{d}\partial_i$. The differential here is \begin{displaymath} d_{W(\mathfrak{a})} = [\pi , - ] + \mathbf{d} \,. \end{displaymath} \begin{uprop} The [[invariant polynomial]] $\omega$ that is in transgression with the cocycle $\nu = \pi$ is \begin{displaymath} \omega = (\mathbf{d} x^i) \wedge (\mathbf{d} \partial_i) \;\;\; \in inv(\mathfrak{a}) \,. \end{displaymath} \end{uprop} \begin{proof} One checks directly that the element \begin{displaymath} cs_\omega = \pi^{i j} \partial_i \wedge \partial_j + x^i \wedge \mathbf{d} \partial_i \end{displaymath} is a Chern-Simons transgression element for $\nu$ and $\omega$, i.e. $d_{W(\mathfrak{a})} cs(\omega) = \omega$. The restriction of $cs_\omega$ to $CE(\mathfrak{a})$ is evidently the Poisson tensor $\pi$. \end{proof} More details on this at [[Chern-Simons element]]. For a [[Poisson manifold]] $X$ with Poisson tensor $\pi = \pi^{i j} \partial_i \wedge \partial_j$, the pair \begin{displaymath} (\mathfrak{P}(X,\pi), \;\;\; \omega = (\mathbf{d} x^i) \wedge (\mathbf{d} \partial_i)) \end{displaymath} consisting of the [[Poisson Lie algebroid]] $\mathfrak{P}(X,\pi)$ and of the [[invariant polynomial]] $\omega$ that is in transgression with its canonical 2-cocycle $\nu = \pi$ (the Poisson tensor) is a symplectic [[Lie algebroid]]. \hypertarget{_courant_algebroid}{}\subsubsection*{{$n=2$: Courant algebroid}}\label{_courant_algebroid} A $2$-symplectic manifold encodes and is encoded by the structure of a [[Courant algebroid]]. A Courant 2algebroid over the point if given by a [[semisimple Lie algebra]] with the symplectic form being the [[Killing form]]. The coresponding Poisson tensor is the canonical 3-cocycle $\langle -, [-,-] \rangle$ on a semisimple Lie algebra. The extension classified by this is the [[string Lie 2-algebra]]. \hypertarget{relation_to_other_concepts}{}\subsection*{{Relation to other concepts}}\label{relation_to_other_concepts} \hypertarget{to_chernsimons_theory}{}\subsubsection*{{To $\infty$-Chern-Simons theory}}\label{to_chernsimons_theory} Since the symplectic form on a symplectic Lie $n$-Algebroid may be understood [[Lie theory|Lie theoretically]] as an [[invariant polynomial]] on an [[L-∞ algebroid]], every symplectic Lie $n$-algebroid serves as a [[target space]] for an [[schreiber:∞-Chern-Simons theory]]: this is [[AKSZ theory]]. We have \begin{itemize}% \item for $n = 1$ the [[Poisson sigma-model]]; \item for $n = 2$ the [[Courant sigma model]] \item and so on. \end{itemize} \hypertarget{to_multisymplectic_geometry}{}\subsubsection*{{To multisymplectic geometry}}\label{to_multisymplectic_geometry} There is also the closely related notion of [[multisymplectic geometry]]. See \begin{itemize}% \item [[John Baez]], [[Chris Rogers]], \emph{Categorified Symplectic Geometry and the String Lie 2-Algebra}, (\href{http://arxiv.org/abs/0901.4721}{arXiv}) \end{itemize} for some relations of this to the above situation for $n = 2$. Essentially multisymplectic geometry studies the higher $n$-ary brackets induced from the binary graded symplectic form discussed here. The relation between these two pictures is the same as that between as studied in the context of [[hemistrict Lie 2-algebra]]s. An article with more details on this: \begin{itemize}% \item [[Chris Rogers]], \emph{Courant algebroids from categorified symplectic geometry} (\href{http://math.ucr.edu/~chris/2plectic-algebroid_DRAFT.pdf}{pdf}). \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[L-∞ algebroid]] \item [[symplectic groupoid]] \end{itemize} [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} The notion originates somewhere in the school of [[Alan Weinstein]]`s school of [[higher category theory|higher categorial]] [[symplectic geometry]]. The first published appearance of the notion at least for $0 \leq n \leq 3$ is \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{Courant algebroids, derived brackets and even symplectic supermanifolds} PhD thesis (\href{http://arxiv.org/abs/math/9910078}{arXiv:9910078}) \end{itemize} A good writeup of this material is in \begin{itemize}% \item [[Dmitry Roytenberg]], \emph{On the structure of graded symplectic supermanifolds and Courant algebroids} in \emph{Quantization, Poisson Brackets and Beyond} , [[Theodore Voronov]] (ed.), Contemp. Math., Vol. 315, Amer. Math. Soc., Providence, RI, 2002 (\href{http://arxiv.org/abs/math/0203110}{arXiv}) \end{itemize} The idea for all $n$ was then sketched, together with many other ideas about [[L-infinity algebroid]]s in the article with the nice title \begin{itemize}% \item [[Pavol ?evera]], \emph{Some title containing the words ``homotopy'' and ``symplectic'', e.g. this one} (\href{http://arxiv.org/abs/math/0105080}{arXiv}) \end{itemize} What we call $n$-symplectic manifold here is called $\Sigma_n$-manifold there. \textbf{Warning} This article here uses the term ``$n$-symplectic'' in a related but not identical sense to the one used here: \begin{itemize}% \item M. de Leon, D. Martin de Diego, M. Salgado, S. Vilari\~n{}o, \emph{K-symplectic formalism on Lie algebroids} (\href{http://lanl.arxiv.org/abs/0905.4585}{arXiv}) \end{itemize} A discussion of aspects of how [[multisymplectic geometry]] related to $n$-symplectic manifolds is in \begin{itemize}% \item [[Chris Rogers]], \emph{Courant algebroids from categorified symplectic geometry} (\href{http://math.ucr.edu/~chris/2plectic-algebroid_DRAFT.pdf}{pdf}) \end{itemize} \begin{itemize}% \item [[Chris Rogers]], \emph{Higher symplectic geometry} PhD thesis (2011) (\href{http://arxiv.org/abs/1106.4068}{arXiv:1106.4068}) \end{itemize} A discussion of symplectic Lie n-algebroids from an [[infinity-Lie theory]] perspective as discussed here is in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:AKSZ Sigma-Models in Higher Chern-Weil Theory]]}, Int. J. Geom. Methods Mod. Phys. 10 (2013) 1250078 (\href{http://arxiv.org/abs/1108.4378}{arXiv:1108.4378}) \end{itemize} The [[H-cohomology]] of graded symplectic forms is considered in \begin{itemize}% \item [[Pavol ?evera]], p. 1 of \emph{On the origin of the BV operator on odd symplectic supermanifolds}, Lett Math Phys (2006) 78: 55. (\href{https://arxiv.org/abs/math/0506331}{arXiv:0506331}) \end{itemize} [[!redirects symplectic Lie n-algebroids]] [[!redirects n-symplectic manifold]] \end{document}