\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{symplectic infinity-groupoid} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{symplectic_geometry}{}\paragraph*{{Symplectic geometry}}\label{symplectic_geometry} [[!include symplectic geometry - contents]] \hypertarget{lie_theory}{}\paragraph*{{$\infty$-Lie theory}}\label{lie_theory} [[!include infinity-Lie theory - contents]] \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{ByLieIntegration}{Examples}\dotfill \pageref*{ByLieIntegration} \linebreak \noindent\hyperlink{__symplectic_manifolds}{$n = 0$ -- Symplectic manifolds}\dotfill \pageref*{__symplectic_manifolds} \linebreak \noindent\hyperlink{SymplecticGroupoidsFromPoissonLieAlgebroids}{$n = 1$ -- Symplectic groupoids from Poisson Lie algebroids}\dotfill \pageref*{SymplecticGroupoidsFromPoissonLieAlgebroids} \linebreak \noindent\hyperlink{__symplectic_2groupoids_from_courant_lie_2algebroids}{$n = 2$ -- Symplectic 2-groupoids from Courant Lie 2-algebroids}\dotfill \pageref*{__symplectic_2groupoids_from_courant_lie_2algebroids} \linebreak \noindent\hyperlink{HigherGeometricQuantization}{Geometric quantization of symplectic $\infty$-groupoids}\dotfill \pageref*{HigherGeometricQuantization} \linebreak \noindent\hyperlink{GeometricQuantizationIdea}{Idea}\dotfill \pageref*{GeometricQuantizationIdea} \linebreak \noindent\hyperlink{PrequantumBundles}{Prequantum circle $(n+1)$-bundle}\dotfill \pageref*{PrequantumBundles} \linebreak \noindent\hyperlink{idea_3}{Idea}\dotfill \pageref*{idea_3} \linebreak \noindent\hyperlink{definition_2}{Definition}\dotfill \pageref*{definition_2} \linebreak \noindent\hyperlink{examples_2}{Examples}\dotfill \pageref*{examples_2} \linebreak \noindent\hyperlink{__ordinary_prequantum_line_bundle}{$n= 1$ -- Ordinary prequantum line bundle}\dotfill \pageref*{__ordinary_prequantum_line_bundle} \linebreak \noindent\hyperlink{__string_lie_2algebra}{$n = 2$ -- String Lie 2-algebra}\dotfill \pageref*{__string_lie_2algebra} \linebreak \noindent\hyperlink{HamiltonianVectorFields}{Poisson $L_\infty$-algebras}\dotfill \pageref*{HamiltonianVectorFields} \linebreak \noindent\hyperlink{idea_4}{Idea}\dotfill \pageref*{idea_4} \linebreak \noindent\hyperlink{definition_3}{Definition}\dotfill \pageref*{definition_3} \linebreak \noindent\hyperlink{examples_3}{Examples}\dotfill \pageref*{examples_3} \linebreak \noindent\hyperlink{OrdinaryHamiltonianVectorFields}{Ordinary Hamiltonian vector fields}\dotfill \pageref*{OrdinaryHamiltonianVectorFields} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{symplectic $\infty$-groupoid} is a [[smooth ∞-groupoid]] equipped with a [[symplectic form]], or, more generally, with an [[n-plectic form]]. This is the generalization of the notion of [[symplectic manifold]] to [[higher symplectic geometry]]. It is also the image under [[Lie integration]] of the notion of [[symplectic Lie n-algebroid|symplectic L-∞ algebroid]], which is also a higher analog of symplectic manifolds, but in an [[infinitesimal object|infinitesimal]] way. Notice that every symplectic manifold is in particular a [[Poisson manifold]] and that the structure of a Poisson manifold is equivalently encoded in the corresponding [[Poisson Lie algebroid]]. A \emph{[[symplectic groupoid]]} is the [[Lie integration]] of such a Poisson Lie algebroid. Therefore, strictly speaking, already ``ordinary'' symplectic geometry secretly involves [[Lie groupoid]]s. This insight is exploited in the refinement of [[geometric quantization of symplectic groupoids]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} For any $n \in \mathbb{N}$, a \emph{[[symplectic Lie n-algebroid]]} $(\mathfrak{P}, \omega)$ is an [[L-∞ algebroid]] $\mathfrak{P}$ that is equipped with a quadratic and non-degenerate $L_\infty$-[[invariant polynomial]]. Under [[Lie integration]] $\mathfrak{P}$ integrates to a [[smooth infinity-groupoid|smooth n-groupoid]] $\tau_n \exp(\mathfrak{P})$. Under the [[∞-Chern-Weil homomorphism]] the invariant polynomial induces an [[smooth infinity-groupoid -- structures|differential form on an ∞-groupoid]] \begin{displaymath} \omega : \tau_n \exp(\mathfrak{P}) \to \flat_{dR} \mathbf{B}^{n+2} \mathbb{R} \end{displaymath} representing a class $[\omega] \in H^{n+2}_{dR}(\tau_n \exp(\mathfrak{P}))$. Let \begin{displaymath} SymplSmooth\infty Grpd \hookrightarrow Smooth\infty Grpd/(\coprod_{n}\mathbf{\flat}_{dR}\mathbf{B}^{n+2}\mathbb{R}) \end{displaymath} be the full [[sub-(∞,1)-category]] of the [[over-(∞,1)-topos]] of [[Smooth∞Grpd]] over the de Rham coefficient objects on those objects in the image of this construction. We say an object on $SymplSmooth \infty Grpd$ is a \textbf{symplectic smooth $\infty$-groupoid}. (There are evident variations of this for the ambient [[Smooth∞Grpd]] replaced by some variant, such as [[SynthDiff∞Grpd]] or [[SmoothSuper∞Grpd]].) \hypertarget{ByLieIntegration}{}\subsection*{{Examples}}\label{ByLieIntegration} The [[symplectic form]] $\omega$ on a [[symplectic Lie n-algebroid]] $\mathfrak{a}$ is Lie theoretically an [[invariant polynomial]]. Therefore by [[infinity-Chern-Weil theory]] it induces a moprhism \begin{displaymath} \exp(\omega) : \tau_n\exp(\mathfrak{a}) \to \mathbf{\flat}_{dR} \mathbf{B}^{n+2} \mathbb{R} \end{displaymath} from the [[Lie integration]] of $\mathfrak{a}$ to the de Rham coefficient object: this is an $(n+2)$-form on a [[smooth ∞-groupoid]] (as discussed at \href{http://ncatlab.org/nlab/show/smooth+infinity-groupoid+--+structures#StrucDeRham}{smooth ∞-groupoid -- structures -- de Rham cohomology}) and hence equips $\exp(\mathfrak{a})$ with the structure of a symplectic $\infty$-groupoid. We spell this out in some special cases. \hypertarget{__symplectic_manifolds}{}\subsubsection*{{$n = 0$ -- Symplectic manifolds}}\label{__symplectic_manifolds} A [[symplectic Lie n-algebroid|symplectic Lie 0-algebroid]] is simply a [[symplectic manifold]], and so is its [[Lie integration]]. \hypertarget{SymplecticGroupoidsFromPoissonLieAlgebroids}{}\subsubsection*{{$n = 1$ -- Symplectic groupoids from Poisson Lie algebroids}}\label{SymplecticGroupoidsFromPoissonLieAlgebroids} We discuss the [[Lie integration]] of [[Poisson Lie algebroids]] to [[symplectic groupoids]]. For more details and applications of this see at \emph{[[extended geometric quantization of 2d Chern-Simons theory]]}. Let $\mathfrak{P}$ be the [[Poisson Lie algebroid]] corresponding to a [[Poisson manifold]] that comes from a [[symplectic manifold]] $(X,\omega)$. The [[symplectic groupoid]] associated to this is (by the discussion there) supposed to be the [[fundamental groupoid]] $\Pi_1(X)$ of $X$ equipped on its space of morphisms with the differential form $p_1^* \omega - p_2^* \omega$, where $p_1,p_2$ are the two endpoint projections from paths in $X$ to $X$. We demonstrate in the following how this is indeed the result of applying the [[∞-Chern-Weil homomorphism]] to this situation. For simplicity we shall start with the simple situation where $(X,\omega)$ has a global [[Darboux coordinate chart]] $\{x^i\}$. Write $\{\omega_{i j}\}$ for the components of the [[symplectic form]] in these coordinates, and $\{\omega^{i j}\}$ for the components of the [[inverse]]. Then the [[Chevalley-Eilenberg algebra]] $CE(\mathfrak{P})$ is generated from $\{x^i\}$ in degree 0 and $\{\partial_i\}$ in degree 1, with differential given by \begin{displaymath} d_{CE} x^i = - \omega^{i j} \partial_j \end{displaymath} \begin{displaymath} d_{CE} \partial_i = \frac{\partial \pi^{j k}}{\partial x^i} \partial_j \wedge \partial_k = 0 \,. \end{displaymath} The differential in the corresponding [[Weil algebra]] is hence \begin{displaymath} d_{W} x^i = - \omega^{i j} \partial_j + \mathbf{d}x^i \end{displaymath} \begin{displaymath} d_{W} \partial_i = \mathbf{d} \partial_i \,. \end{displaymath} By the discussion at [[Poisson Lie algebroid]], the symplectic [[invariant polynomial]] is \begin{displaymath} \mathbf{\omega} = \mathbf{d} x^i \wedge \mathbf{d} \partial_i \in W(\mathfrak{P}) \,. \end{displaymath} Clearly it is useful to introduce a new basis of generators with \begin{displaymath} \partial^i := -\omega^{i j} \partial_j \,. \end{displaymath} In this new basis we have a manifest isomorphism \begin{displaymath} CE(\mathfrak{P}) = CE(\mathfrak{T}X) \end{displaymath} with the [[Chevalley-Eilenberg algebra]] of the [[tangent Lie algebroid]] of $X$. Therefore the [[Lie integration]] of $\mathfrak{P}$ is the [[fundamental groupoid]] of $X$, which, since we have assumed global Darboux oordinates and hence [[contractible]] $X$, is just the [[pair groupoid]]: \begin{displaymath} \tau_1 \exp(\mathfrak{P}) = \Pi_1(X) = (X \times X \stackrel{\overset{p_2}{\to}}{\underset{p_1}{\to}} X) \,. \end{displaymath} It remains to show that the symplectic form on $\mathfrak{P}$ makes this a [[symplectic groupoid]]. Notice that in the new basis the invariant polynomial reads \begin{displaymath} \begin{aligned} \mathbf{\omega} &= - \omega_{i j} \mathbf{d}x^i \wedge \mathbf{d} \partial^j \\ & = \mathbf{d}( \omega_{i j} \partial^i \wedge \mathbf{d}x^j) \end{aligned} \end{displaymath} and that we may regard this as a morphism of $L_\infty$-algebroids \begin{displaymath} \mathbf{\omega} : \mathfrak{T}\mathfrak{P} \to \mathfrak{T}b^3 \mathbb{R} \end{displaymath} The corresponding [[infinity-Chern-Weil theory|infinity-Chern-Weil homomorphism]] that we need to compute is given by the [[∞-anafunctor]] \begin{displaymath} \itexarray{ \exp(\mathfrak{P})_{diff} &\stackrel{\exp(\mathbf{\omega})}{\to}& \exp(b \mathbb{R})_{dR} &\stackrel{\int_{\Delta^\bullet}}{\to}& \mathbf{\flat}_{dR}\mathbf{B}^3 \mathbb{R} \\ \downarrow^{\mathrlap{\simeq}} \\ \exp(\mathfrak{P}) } \,. \end{displaymath} Over a test space $U$ in degree 1 an element in $\exp(\mathfrak{P})_{diff}$ is a pair $(X^i, \eta^i)$ \begin{displaymath} X^i \in C^\infty(U \times \Delta^1) \end{displaymath} \begin{displaymath} \eta^i \in \Omega^1_{vert}(U \times \Delta^1) \end{displaymath} subject to the verticality constraint, which says that along $\Delta^1$ we have \begin{displaymath} d_{\Delta^1} X^i + \eta^i_{\Delta^1} = 0 \,. \end{displaymath} The vertical morphism $\exp(\mathfrak{P})_{diff} \to \exp(\mathfrak{P})$ has in fact a [[section]] whose image is given by those pairs for which $\eta^i$ has no leg along $U$. We therefore find the desired form on $\exp(\mathfrak{P})$ by evaluating the top morphism on pairs of this form. Such a pair is taken by the top morphism to \begin{displaymath} \begin{aligned} (X^i, \eta^j) & \mapsto \int_{\Delta^1} \omega_{i j} F_{X^i} \wedge F_{\partial^j} \\ & = \int_{\Delta^1} \omega_{i j} (d_{dR} X^i + \eta^i) \wedge d_{dR} \eta^j \in \Omega^3(U) \end{aligned} \,. \end{displaymath} Using the above verticality constraint and the condition that $\eta^i$ has no leg along $U$, this becomes \begin{displaymath} \cdots = \int_{\Delta^1} \omega_{i j} d_U X^i \wedge d_U d_{\Delta^1} X^j \,. \end{displaymath} By the [[Stokes theorem]] the integration over $\Delta^1$ yields \begin{displaymath} \cdots = \omega_{i j} d_{dR} x^i \wedge \eta^j|_{0} - \omega_{i j} d_{dR} x^i \wedge \eta^j|_{1} \,. \end{displaymath} This completes the proof. \hypertarget{__symplectic_2groupoids_from_courant_lie_2algebroids}{}\subsubsection*{{$n = 2$ -- Symplectic 2-groupoids from Courant Lie 2-algebroids}}\label{__symplectic_2groupoids_from_courant_lie_2algebroids} \hypertarget{HigherGeometricQuantization}{}\subsection*{{Geometric quantization of symplectic $\infty$-groupoids}}\label{HigherGeometricQuantization} \hypertarget{GeometricQuantizationIdea}{}\subsubsection*{{Idea}}\label{GeometricQuantizationIdea} The notion of \emph{[[symplectic manifold]]} formalizes in [[physics]] the concept of a \emph{[[classical mechanical system]]} . The notion of \emph{[[geometric quantization]]} of a symplectic manifold is one formalization of the general concept in physics of \emph{[[quantization]]} of such a system to a \emph{[[quantum mechanical system]]} . Or rather, the notion of [[symplectic manifold]] does not quite capture the most general systems of [[classical mechanics]]. One generalization requires passage to \emph{[[Poisson manifolds]]} . The original methods of [[geometric quantization]] become meaningless on a Poisson manifold that is not symplectic. However, a Poisson structure on a manifold $X$ is equivalent to the structure of a [[Poisson Lie algebroid]] $\mathfrak{P}$ over $X$. This is noteworthy, because the latter \emph{is} again symplectic, as a [[Lie algebroid]], even if the underlying Poisson manifold is not symplectic: it is a \emph{[[symplectic Lie n-algebroid|symplectic Lie algebroid]]} . Based on related observations it was suggested that the notion of \emph{[[symplectic groupoid]]} (see the references there) should naturally replace that of \emph{symplectic manifold} for the purposes of geometric quantization to yield a notion of \emph{[[geometric quantization of symplectic groupoids]]} . Since a symplectic manifold can be regarded as a [[symplectic Lie n-algebroid|symplectic Lie 0-algebroid]] and also as a symplectic [[smooth infinity-groupoid|smooth 0-groupoid]], this step amounts to a kind of [[categorification]] of [[symplectic geometry]]. More or less implicitly, there has been strong evidence that this shift in perspective is substantial: the \emph{[[deformation quantization]]} (see there for references) of a [[Poisson manifold]] turns out to be constructible in terms of [[correlator]]s of the 2-dimensional [[TQFT]] called the \emph{[[Poisson sigma-model]]} associated with the corresponding [[Poisson Lie algebroid]]. The fact that this is 2-dimensional and not 1-dimensional, as the [[quantum mechanical system]] that it thus encodes, is a direct reflection of this [[categorification]] shift of degree -- see \emph{[[holographic principle]]} for more on this. On general abstract grounds this already suggests that it makes sense to pass via [[higher category theory|higher categorification]] further to [[Courant Lie 2-algebroid|symplectic Lie 2-algebroid]]s, and generally [[symplectic Lie n-algebroid]]s, as well as to symplectic [[2-groupoid]]s, symplectic [[3-groupoids]], etc. up to symplectic $\infty$-groupoids. Formal hints for such a generalization had been noted in (\hyperlink{Severa}{\v{S}evera}), in particular in its concluding table. More indirect -- but all the more noteworthy -- hints came from [[quantum field theory]], where it was observed that a generalization of symplectic geometry to \emph{[[multisymplectic geometry]]} of degree $n$ more naturally captures the description of $n$-dimensional [[QFT]] (notice that [[quantum mechanics]] may be understood as $(0+1)$-dimensional QFT). For, observe that the symplectic form on a [[symplectic Lie n-algebroid]] is, while always ``binary'', nevertheless a representative of [[de Rham cohomology]] in degree $(n+2)$. There is a natural formalization of these higher symplectic structures in the context of any [[cohesive (∞,1)-topos]]. Moreover, with (\hyperlink{FRS}{FRS}) we may observe that symplectic forms on [[L-∞ algebroid]]s have a natural interpretation in [[∞-Lie theory]]: they are $L_\infty$-[[invariant polynomial]]s. This means that the [[∞-Chern-Weil homomorphism]] applies to them. We shall show below that all notions of geometric quantization of symplectic $\infty$-groupoids have a natural interpretation in terms of these canonical structures. For instance the higher ``prequantum line bundle'' is nothing but the [[circle n-bundle with connection]] that the [[∞-Chern-Weil homomorphism]] assigns to the symplectic form, regarded as an $L_\infty$-[[invariant polynomial]], and the corresponding ``[[holographic principle|holographic]]'' [[TQFT]] -- the \emph{[[AKSZ sigma-model]]} -- is that given by the induced [[schreiber:∞-Chern-Simons theory|∞-Chern-Simons functional]]. \hypertarget{PrequantumBundles}{}\subsubsection*{{Prequantum circle $(n+1)$-bundle}}\label{PrequantumBundles} \hypertarget{idea_3}{}\paragraph*{{Idea}}\label{idea_3} What is called \emph{[[geometric quantization|(geometric) prequantization]]} is a refinement of symplectic 2-forms to [[curvature]] 2-forms on a [[line bundle]] with [[connection on a bundle|connection]]. This is called a choice of \emph{prequantum line bundle} for the given symplectic form. This has an evident generalization to closed forms of degree $(n+2)$. If integral, these may be refined to a [[curvature]] $(n+2)$-form on a \emph{[[circle n-bundle with connection]]} . Since in the context of [[smooth ∞-groupoid]]s we can have circle $n$-bundles over other smooth $\infty$-groupoids, this means that we canonically have the notion of \textbf{prequantum circle $(n+1)$-bundles} on a symplectic $n$-groupoid. Moreover, since, as discussed above, the symplectic form on a symplectic $n$-groupoid may be regarded as the image of an [[invariant polynomial]] under the unrefined [[∞-Chern-Weil homomorphism]] \begin{displaymath} \omega : X \to \mathbf{\flat}_{dR} \mathbf{B}^{n+2}\mathbb{R} \,, \end{displaymath} the passage to the prequantum $(n+1)$-bundle with connection corresponds to passing to the \emph{refined} [[∞-Chern-Weil homomorphism]] \begin{displaymath} \hat \omega : X \to \mathbf{B}^{n+1}U(1)_{conn} \end{displaymath} (as discussed there). \hypertarget{definition_2}{}\paragraph*{{Definition}}\label{definition_2} Let $(X, \omega)$ be a symplectic $\infty$-groupoid. Then $\omega$ represents a class \begin{displaymath} [\omega] \in H^{n+2}_{dR}(X) \,. \end{displaymath} We say this form is \emph{integral} if it is in the image of the [[curvature]]-projection \begin{displaymath} curv : H^{n+1}_{diff}(X,U(1)) \to H^{n+2}_{dR}(X) \end{displaymath} from the [[ordinary differential cohomology]] of $X$. In this case we say a \textbf{prequantum [[circle n-bundle with connection|circle (n+1)-bundle with connection]]} for $(X,\omega)$ is a lift of $\omega$ to $\mathbf{H}_{diff}(X, \mathbf{B}^{n+1}U(1))$. Write $\hat X \to X$ for the underlying [[circle n-group|circle (n+1)-group]]-[[principal ∞-bundle]]. \begin{prop} \label{}\hypertarget{}{} If $(X, \omega)$ indeed comes from the [[Lie integration]] of a [[symplectic Lie n-algebroid]] $(\mathfrak{P}, \omega)$ such that the [[period]]s of the [[L-∞ cocycle]] $\pi$ that $\omega$ [[Chern-Simons element|transgresses to]] are integral, then $\hat X$ is the [[Lie integration]] of the [[L-∞ extension]] \begin{displaymath} b^{n}\mathbb{R} \to \hat \mathfrak{P} \to \mathfrak{P} \end{displaymath} classified by $\pi$: \begin{displaymath} \hat X \simeq \tau_{n+1} \exp(\hat \mathfrak{P}) \,. \end{displaymath} \end{prop} \hypertarget{examples_2}{}\paragraph*{{Examples}}\label{examples_2} \hypertarget{__ordinary_prequantum_line_bundle}{}\paragraph*{{$n= 1$ -- Ordinary prequantum line bundle}}\label{__ordinary_prequantum_line_bundle} See [[geometric quantization of symplectic groupoids]]. \hypertarget{__string_lie_2algebra}{}\paragraph*{{$n = 2$ -- String Lie 2-algebra}}\label{__string_lie_2algebra} For $\mathfrak{g}$ a [[semisimple Lie algebra]] with quadratic [[invariant polynomial]] $\omega$, the pair $(b \mathfrak{g}, \omega)$ is a [[symplectic Lie n-algebroid|symplectic Lie 2-algebroid]] ([[Courant Lie 2-algebroid]]) over the point. In this case the infinitesimal prequantum line 2-bundle is the [[delooping]] of the [[string Lie 2-algebra]] \begin{displaymath} \widehat b \mathfrak{g} \simeq b \mathfrak{string} \end{displaymath} and the prequantum [[circle n-group|circle 2-group]] [[principal 2-bundle]] is the [[delooping]] of the [[smooth string 2-group]] \begin{displaymath} (\hat X \to X) = (\mathbf{B}String \to \mathbf{B}G) \,. \end{displaymath} \hypertarget{HamiltonianVectorFields}{}\subsection*{{Poisson $L_\infty$-algebras}}\label{HamiltonianVectorFields} \hypertarget{idea_4}{}\subsubsection*{{Idea}}\label{idea_4} A [[Hamiltonian vector field]] on an ordinary [[symplectic manifold]] is a [[vector field]] $v$ whose contraction with the [[symplectic form]] yields an exact form \begin{displaymath} \iota_v \omega = d \alpha \,. \end{displaymath} This definition generalizes verbatim to [[n-plectic geometry]]. We observe \hyperlink{OrdinaryHamiltonianVectorFields}{below} that this condition is equivalent to the fact that the [[flow]] $\exp(v) : X \to X$ of $v$ preserves the connection on any [[prequantum line bundle]], up to homotopy (up to [[gauge transformation]]). In this form the definition has an immediate generalization to symplectic $n$-groupoids. \hypertarget{definition_3}{}\subsubsection*{{Definition}}\label{definition_3} \begin{defn} \label{HamiltonianVectorFieldsOnGrpd}\hypertarget{HamiltonianVectorFieldsOnGrpd}{} Let $\omega : X \to \mathbf{\flat}_{dR} \mathbf{B}^{n+2} U(1)$ be a symplectic $(n-1)$-groupoid and let \begin{displaymath} \hat \omega : X \to \mathbf{B}^{n+2} U(1)_{conn} \end{displaymath} be a \hyperlink{PrequantumBundles}{prequantization} [[circle n-bundle with connection]]. Regard it as an object in the [[over-(∞,1)-topos]] $\mathbf{H}/\mathbf{B}^{n+2}U(1)_{conn}$. Consider the internal [[automorphism ∞-group]] \begin{displaymath} \underline{Aut}_{\mathbf{H}/\mathbf{B}^{n+1}U(1)_{conn}}(X) \in \mathbf{H} \end{displaymath} of auto-[[equivalence in an (infinity,1)-category|equivalences]] that respect the [[connection on an infinity-bundle|∞-connection]] that refines $\omega$. \begin{itemize}% \item Its image under $p_! : \mathbf{H}_{/\mathbf{B}^n U(1)_{conn}} \to \mathbf{H}$ we call the \textbf{[[Hamiltonian symplectomorphism]] $\infty$-group.} \item Its [[∞-Lie algebra]] we call the \textbf{[[Poisson algebra|Poisson ∞-Lie algebra]]} of $(X, \omega)$. \end{itemize} \end{defn} \hypertarget{examples_3}{}\subsubsection*{{Examples}}\label{examples_3} \hypertarget{OrdinaryHamiltonianVectorFields}{}\paragraph*{{Ordinary Hamiltonian vector fields}}\label{OrdinaryHamiltonianVectorFields} \begin{prop} \label{}\hypertarget{}{} For $\omega : X \to \mathbf{\flat}_{dR} \mathbf{B}^2 U(1)$ an ordinary [[symplectic manifold]], regarded as a symplectic 0-groupoid, the general definition \ref{HamiltonianVectorFieldsOnGrpd} reproduces the standard notion of [[Hamiltonian vector fields]]. \end{prop} \begin{proof} An Hamiltonian diffeomorphism is given by a diagram \begin{displaymath} \itexarray{ X &&\stackrel{\phi}{\to} && X \\ & {}_{\mathllap{\hat \omega}}\searrow &\swArrow_{\alpha}& \swarrow_{\mathrlap{\hat \omega}} \\ && \mathbf{B} U(1)_{conn} } \,, \end{displaymath} where $\phi$ is an ordinary [[diffeomorphism]]. To compute the Lie algebra of this, we need to consider smooth 1-parameter families of such and differentiate them. Assume first that the connection 1-form in $\hat \omega$ is globally defined $A \in \Omega^1(X)$ with $d A = \omega$. Then the above diagram is equivalent to \begin{displaymath} (\phi(t)^* A - A) = d \alpha(t) \,, \end{displaymath} where $\alpha(t) \in C^\infty(X)$. Differentiating this at 0 yields the [[Lie derivative]] \begin{displaymath} \mathcal{L}_v A = d \alpha' \,, \end{displaymath} where $v$ is the [[vector field]] of which $t \mapsto \phi(t)$ is the [[flow]]. By [[Cartan calculus]] this is \begin{displaymath} d \iota_v A + \iota_v d_{dR} A = d \alpha' \end{displaymath} hence \begin{displaymath} \iota_v \omega = d (\alpha' - \iota_v A) \,. \end{displaymath} This says that for $v$ to be Hamiltonian, its contraction with $\omega$ must be exact. This is precisely the definition of [[Hamiltonian vector field]]s. The corresponding [[Hamiltonian]] here is $\alpha'-\iota_v A$. In the general case that the prequantum [[circle n-bundle with connection]] is not trivial, we can present it by a [[Cech cohomology|Cech cocycle]] on the [[Cech nerve]] $C(P_* X \to X)$ of the based [[path space]] [[surjective submersion]] (regarding $P_* X$ as a [[diffeological space]] and choosing one base point per connected component, or else assuming without restriction that $X$ is connected). Any [[diffeomorphism]] $\phi = \exp(v) : X \to X$ lifts to a diffeomorphism $P_*\phi : P_* X \to P_* X$ by setting $P_* \phi(\gamma) : (t \in [0,1]) \mapsto \exp(t v)(\gamma(t))$. So we get a diagram \begin{displaymath} \itexarray{ C(P_* \to X) &&\stackrel{P_*\phi}{\to} && C(P_* \to X) \\ & {}_{\mathllap{\hat \omega}}\searrow &\swArrow_{\alpha}& \swarrow_{\mathrlap{\hat \omega}} \\ && \mathbf{B} U(1)_{conn} } \end{displaymath} of [[simplicial presheaves]]. Now the same argument as above applies on $P_* X$. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[higher symplectic geometry]] \begin{itemize}% \item [[symplectic Lie n-algebroid]] \item [[symplectic groupoid]] \end{itemize} \item [[higher geometric quantization]] \end{itemize} [[!include infinity-CS theory for binary non-degenerate invariant polynomial - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Some ideas pointing to higher symplectic groupoids were indicated in \begin{itemize}% \item [[Pavol ?evera]], \emph{Some title containing the words ``homotopy'' and ``symplectic'', e.g. this one} (\href{http://arxiv.org/abs/math/0105080}{arXiv:math/0105080}). \end{itemize} Aspects of the relation to [[multisymplectic geometry]] are in \begin{itemize}% \item [[Chris Rogers]], \emph{Higher symplectic geometry} PhD thesis (2011) (\href{http://arxiv.org/abs/1106.4068}{arXiv:1106.4068}) \end{itemize} A discussion of higher symplectic geometry in a general context is in \begin{itemize}% \item [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher geometric prequantization]]} \end{itemize} See also section 4.3 of \begin{itemize}% \item [[Urs Schreiber]], \emph{[[schreiber:differential cohomology in a cohesive topos]]} . \end{itemize} Some ingredients for the geometric quantization of symplectic Lie $n$-algebroids are constructed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Chris Rogers]], [[Urs Schreiber]], \emph{[[schreiber:Higher Chern-Weil Derivation of AKSZ Sigma-Models]]} \end{itemize} [[!redirects symplectic ∞-groupoid]] [[!redirects symplectic ∞-groupoids]] [[!redirects symplectic infinity-groupoids]] [[!redirects geometric quantization of symplectic ∞-groupoids]] [[!redirects geometric quantization of symplectic infinity-groupoids]] [[!redirects n-plectic ∞-groupoid]] [[!redirects n-plectic infinity-groupoid]] [[!redirects n-plectic ∞-groupoids]] [[!redirects n-plectic infinity-groupoids]] [[!redirects n-plectic smooth ∞-groupoid]] [[!redirects n-plectic smooth infinity-groupoid]] [[!redirects n-plectic smooth ∞-groupoids]] [[!redirects n-plectic smooth infinity-groupoids]] \end{document}