\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{table of marks} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{group_theory}{}\paragraph*{{Group Theory}}\label{group_theory} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{Properties}{Properties}\dotfill \pageref*{Properties} \linebreak \noindent\hyperlink{RelationToCharacters}{Relation to characters}\dotfill \pageref*{RelationToCharacters} \linebreak \noindent\hyperlink{RelationToBurnsideProduct}{Relation to Burnside product}\dotfill \pageref*{RelationToBurnsideProduct} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{BurnsideCharacter}\hypertarget{BurnsideCharacter}{} \textbf{([[Burnside marks]] and [[Burnside character]])} Let $G$ be a [[finite group]] and let $X \in G Set^{fin}$ any [[finite set|finite]] [[G-set]]. For $[H]$ the [[conjugacy class]] of a [[subgroup]] $H \subset G$, the \emph{$[H]$-mark on $X$} is the [[cardinality]] of the [[set]] of $H$-[[fixed points]], hence the [[natural number]] \begin{displaymath} \phi_{[H]}(X) \;\coloneqq\; \left\vert X^{H} \right\vert \end{displaymath} of [[elements]] $x \in X$ such that for each $h \in H \subset G$ we have $h(x) = x$. This construction extends to a [[ring homomorphism]] \begin{equation} \itexarray{ \phi &\colon& A(G) &\overset{\phi}{\longrightarrow}& \mathbb{Z}^{Conj(G)} \\ && [X] &\mapsto& \big( [H] \mapsto \left\vert X^H\right\vert\big) } \label{BurnsideCharacter}\end{equation} from the [[Burnside ring]] to the ring of [[tuples]] of [[integers]] of length the number $Conj(G)$ of [[conjugacy classes]] of [[subgroups]] of $G$. This morphism is also called the \emph{Burnside character} or \emph{mark homomorphism}. \end{defn} \begin{remark} \label{MarksInTermsOfHoms}\hypertarget{MarksInTermsOfHoms}{} \textbf{(marks in terms of homs)} Equivalent the set of $[H]$-marks of a [[G-set]] $X$ (Def. \ref{BurnsideCharacter}) is the [[hom-set]] in [[GSet]] from $G/H$ to $X$. \end{remark} \begin{proof} This follows from a basic standard argument. For completeness, we make it explicit: By [[transitive action|transitivity]] of the [[action]] on $G/H$ a $G$-equivariant function $f \colon G/H \to X$ is fully specified by its [[image]] $f([e]) \in X$ of the [[equivalence class]] $[e] \in G/H$ of the [[neutral element]]. Since this $[e] \in G/H$ is [[fixed point|fixed]] precisely by the elements in $H \subset G$ it may, again by $G$-equivariance, be mapped to any $H$-[[fixed point]] $f([e]) \in X^H \subset X$. \end{proof} Of particular interest are the marks of the [[transitive action|transitive]] [[G-sets]], i.e. those [[isomorphism|isomorphic]] to sets $G/H$ of [[coset]], for $H\subset G$ a [[subgroup]]. These arrange into a \emph{table of marks}: \begin{defn} \label{TableOfMarks}\hypertarget{TableOfMarks}{} \textbf{([[table of marks]])} The \emph{table of Burnside marks} (or \emph{table of marks}, for short) of a [[finite group]] $G$ is the [[matrix]] indexed by [[conjugacy classes]] $[H]$ of [[subgroups]] $H \subset G$ whose $([H_i], [H_j])$-entry is the $[H_j]$-marks of $G/H_i$ (Def. \ref{BurnsideCharacter}), hence the number of [[fixed points]] of the [[action]] of $H_j$ on the [[coset space]] $G/H_i$: \begin{displaymath} M_{i j} \;\coloneqq\; \left\vert \left(G/H_i\right)^{H_j} \right\vert \,. \end{displaymath} \end{defn} (e.g. \hyperlink{Pfeiffer97}{Pfeiffer 97}, chapter \emph{\href{http://schmidt.ucg.ie/~goetz/pub/marks/node1.html#SECTION00010000000000000000}{The Burnside Ring and the Table of Marks}}) \begin{remark} \label{TableOfMarksInTermsOfHoms}\hypertarget{TableOfMarksInTermsOfHoms}{} \textbf{(table of marks in terms of homs)} The expression of marks in terms of homs (Remark \ref{MarksInTermsOfHoms}) means here that the table of marks (Def. \ref{TableOfMarks}) is equivalently given by \begin{displaymath} M_{i j} \;\coloneqq\; \left\vert \left(G/H_i\right)^{H_j} \right\vert \;=\; \left\vert Hom_{G Set}(G/H_j, G/H_i)\right\vert \,. \end{displaymath} \end{remark} \hypertarget{Properties}{}\subsection*{{Properties}}\label{Properties} \hypertarget{RelationToCharacters}{}\subsubsection*{{Relation to characters}}\label{RelationToCharacters} The following Prop. \ref{BurnsideCharacterIsInjective} that the [[Burnside character]] plays the same role for finite [[G-sets]] as [[characters of representations]] play for finite-dimensional [[linear representations]], in that it faithfully reflects $G$-sets. In fact the marks of a $G$-set over [[cyclic group|cyclic]] [[subgroups]] coincides with the [[character of a linear representation|character]] of its [[permutation representation]] over any [[ground field]] (Prop. \ref{MarkHomomorphismIsCharactersOfPermutationRepresentation}) below. \begin{prop} \label{BurnsideCharacterIsInjective}\hypertarget{BurnsideCharacterIsInjective}{} \textbf{([[Burnside character]] is [[injective function|injective]])} The Burnside character \eqref{BurnsideCharacter} is [[injective function|injective]]. Hence any two [[finite set|finite]] [[G-sets]] are [[isomorphism|isomorphic]] precisely if they have the same Burnside marks (Def. \ref{BurnsideCharacter}). \end{prop} (e.g. \hyperlink{tomDieck79}{tomDieck 79, Prop. 1.2.2}, \hyperlink{tomDieck09}{tomDieck 09, Prop. 5.1.1}) \begin{prop} \label{MarkHomomorphismIsCharactersOfPermutationRepresentation}\hypertarget{MarkHomomorphismIsCharactersOfPermutationRepresentation}{} \textbf{([[mark homomorphism]] on [[cyclic groups]] agrees with [[character of a linear representation|characters]] of corresponding [[permutation representations]])} For $S \in G Set_{fin}$ a [[finite set|finite]] [[G-set]], for $k$ any [[field]] and $k[S] \in Rep_k(G)$ the corresponding [[permutation representation]], the [[character of a representation|character]] $\chi_{k[S]}$ of the [[permutation representation]] at any $g \in G$ equals the [[Burnside marks]] (Def. \ref{BurnsideCharacter}) of $S$ under the [[cyclic group]] $\langle g\rangle \subset G$ [[generators and relations|generated]] by $g$: \begin{displaymath} \chi_{k[S]}\big( g \big) \;=\; \left\vert X^{\langle g \rangle} \right\vert \;\in\; \mathbb{Z} \longrightarrow k \,. \end{displaymath} Hence the [[mark homomorphism]] (Def. \ref{BurnsideCharacter}) of $G$-sets restricted to [[cyclic group|cyclic]] [[subgroups]] coincides with the [[character of a representation|characters]] of their [[permutation representations]]. This statement immediately generalizes from plain representations to [[virtual representations]], hence to the [[Burnside ring]]. \end{prop} (e.g. \hyperlink{tomDieck09}{tom Dieck 09, (2.15)}) \begin{proof} By definition of \emph{[[character of a linear representation]]}, we have that \begin{displaymath} \chi_{k[S]}(g) = tr_{k[S]}(g) \end{displaymath} is the [[trace]] of the [[linear map|linear]] [[endomorphism]] $k[S] \overset{g}{\to} k[S]$ of the given [[permutation representation]]. Now the canonical $k$-[[linear basis]] for $k[S]$ is of course the [[set]] $S$ itself, and so \begin{displaymath} \begin{aligned} \chi_{k[S]}(g) & = \underset{ s \in S }{\sum} \left\{ \itexarray{ 1 &\vert& g(s) = s \\ 0 &\vert& \text{otherwise} } \right. \\ & = \left\vert S^g \right\vert \\ & = \left\vert S^{\langle g \rangle} \right\vert \end{aligned} \end{displaymath} Here in the first step we spelled out the definition of [[trace]] in the canonical basis, and in the second step we observed that the [[fixed point set]] of a [[cyclic group]] equals that of any one of its generating elements. \end{proof} \hypertarget{RelationToBurnsideProduct}{}\subsubsection*{{Relation to Burnside product}}\label{RelationToBurnsideProduct} We discuss, in Prop. \ref{BurnsideProductInTermsOfTableOfMarks} below, how the [[table of marks]] encodes the product in the [[Burnside ring]] of the given [[finite group]] $G$. For this purpose we first consider two Lemma: Lemma \ref{LinearOrderOnConjugacyClassesOfSubgroups} and Lemma \ref{TableOfMarksIsInvertibleUpperTriangular}. \begin{prop} \label{LinearOrderOnConjugacyClassesOfSubgroups}\hypertarget{LinearOrderOnConjugacyClassesOfSubgroups}{} \textbf{([[linear order]] on set of [[conjugacy classes]] of [[subgroups]])} There exists a [[linear order]] $\leq_{lin}$ on the [[set]] of [[conjugacy classes]] $[H]$ of [[subgroups]] of $G$ such that a subgroup inclusion $H \subset H'$ implies that $[H] \leq_{lin} [H']$. \end{prop} \begin{proof} This follows by the general existence of [[linear extensions of partial orders]] applied to the [[subgroup lattice]] of $G$. \end{proof} \begin{lemma} \label{TableOfMarksIsInvertibleUpperTriangular}\hypertarget{TableOfMarksIsInvertibleUpperTriangular}{} \textbf{([[table of marks]] is [[lower triangular matrix|lower triangular]] [[invertible matrix]])} With respect to any [[linear order]] on the [[conjugacy classes]] of subgroups as in Lemma \ref{LinearOrderOnConjugacyClassesOfSubgroups}, the [[table of marks]] (Def. \ref{TableOfMarks}) becomes a [[lower triangular matrix]] over the [[integers]] with non-[[zero]] entries on the diagonal. In particular, it is an [[invertible matrix]]. \end{lemma} \begin{proof} That the [[subgroup]] $H_j \subset G$ has any [[fixed points]] in $G/H_i$ means that there is a $g \in G$ such that $h g H_i = g H_i$ for all $h \in H_j$, and thus that $g^{-1}H_{j}g$ is a subgroup of $H_{i}$, or in other words, that $H_{j}$ is conjugate to a subgroup of $H_{i}$. Hence \begin{displaymath} \big( M_{i j} \gt 0 \big) \;\Rightarrow\; \big( [H_j] \leq_{lin} [H_i] \big) \,, \end{displaymath} and thus the matrix $M$ is [[lower triangular matrix|lower triangular]]. Since at least $H = 1_{G/H}$ is fixed by $H$, we moreover have that the diagonal entries are non-zero. \end{proof} In the following, given a [[G-set]] $G/H_i$ we write $[G/H_i] \in A(G)$ for its [[isomorphism class]], regarded as an element in the [[Burnside ring]]. \begin{defn} \label{BurnsideMultiplicities}\hypertarget{BurnsideMultiplicities}{} \textbf{(Burnside multiplicities)} Given a choice of [[linear order]] on the [[conjugacy classes]] of [[subgroups]] of $G$ (for instance as in Lemma \ref{LinearOrderOnConjugacyClassesOfSubgroups}), we say that the corresponding \emph{structure constants} of the [[Burnside ring]] (or \emph{Burnside multiplicities}) are the [[natural numbers]] \begin{displaymath} n_{i j}^\ell \;\in\; \mathbb{N} \end{displaymath} uniquely defined by the [[equation]] \begin{equation} [G/H_i] \times [G/H_j] \;=\; \underset{ \ell }{\sum} n_{i j}^\ell [G/H_\ell] \,. \label{BurnsideStructureConstants}\end{equation} \end{defn} \begin{prop} \label{BurnsideProductInTermsOfTableOfMarks}\hypertarget{BurnsideProductInTermsOfTableOfMarks}{} \textbf{([[Burnside ring]] product in terms of [[table of marks]])} The Burnside ring structure constants $\left( n_{i j}^\ell\right)$ (Def. \ref{BurnsideMultiplicities}) are equal to the following algebraic expression in the [[table of marks]] $\left( M_{i j}\right)$ and its [[inverse matrix]] $\left( \left(M^{-1}\right)_{r s} \right)$ (which exists by Lemma \ref{TableOfMarksIsInvertibleUpperTriangular}): \begin{displaymath} n_{i j}^\ell \;=\; \underset{m}{\sum} M_{i m} \cdot M_{j m} \cdot (M^{-1})_{m \ell} \end{displaymath} \end{prop} \begin{proof} Let $t$ be the dimension of $M$, i.e. $M$ is a $t \times t$ matrix. For any $1 \leq m \leq t$, we compute as follows: \begin{displaymath} \begin{aligned} \underset{1 \leq \ell \leq t}{\sum} n_{i j}^\ell \cdot M_{\ell m} & = \underset{1 \leq \ell \leq t}{\sum} n_{i j}^\ell \cdot \left\vert Hom_{GSet} \big( G/H_m , G/H_\ell \big) \right\vert \\ & = \left\vert Hom_{GSet} \big( G/H_m , \underset{\ell}{\sum} n_{i j}^\ell \cdot G/H_\ell \big) \right\vert \\ & = \left\vert Hom_{GSet}\big( G/H_m, \; G/H_i \times G/H_j \big) \right\vert \\ & = \left\vert Hom_{GSet}\big( G/H_m, \; G/H_i \big) \right\vert \cdot \left\vert Hom_{GSet}\big( G/H_m, \; G/H_j \big) \right\vert \\ & = M_{i m} \cdot M_{j m} \end{aligned} \end{displaymath} Here the third step uses the defining equation \eqref{BurnsideStructureConstants} of the structure constants $n_{i j}^\ell$, while all other steps use that the mark homomorphism is a [[ring homomorphism]], which we made manifest by expressing the marks via [[hom-sets]] (Remark \ref{TableOfMarksInTermsOfHoms}). Thus we have that $\left( n_{i j}^{1}, n_{i j}^{2}, \ldots, n_{i j}^{t} \right)$ is a solution to the following system of equations. \begin{displaymath} \begin{aligned} M_{i 1} \cdot M_{j 1} &= M_{1 1}x_{1} + \cdots + M_{t 1}x_{t} \\ M_{i 2} \cdot M_{j 2} &= M_{1 2}x_{1} + \cdots + M_{t 2} x_{t} \\ &\vdots \\ M_{i t} \cdot M_{j t} &= M_{1 t}x_{1} + \cdots + M_{t t} x_{t} \end{aligned} \end{displaymath} But, since $M$ is invertible, the unique solution to this system of equations is given by the product of $M^{-1}$ and the transposition of $\left( M_{i 1} \cdot M_{j 1}, \ldots, M_{i t} \cdot M_{j t} \right)$. The claim follows immediately. \end{proof} $\backslash$begin\{corollary\} The [[table of marks]] of a finite group determines its [[Burnside ring]]. That is to say, if the tables of marks of a pair of groups $G_{1}$ and $G_{2}$ are [[equality|equal]], then the Burnside ring of $G_{1}$ is [[isomorphism|isomorphic]] to the Burnside ring of $G_{2}$. $\backslash$end\{corollary\} $\backslash$begin\{proof\} The Burnside ring of a finite group is a free abelian group on the set $G / H_1, \ldots, G / H_t$, where $H_1, \ldots, H_t$ are representatives of the conjugacy classes of that group, equipped with a certain multiplication. Thus it suffices to check that the structure constants of the Burnside rings coincide, which is established by the previous proposition. $\backslash$end\{proof\} \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} \begin{itemize}% \item [[Burnside ring is equivariant stable cohomotopy of the point]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[character table]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept was introduced in \begin{itemize}% \item [[William Burnside]], chapter XII of \emph{Theory of Groups of Finite Order}, 1897 (\href{http://www.gutenberg.org/files/40395/40395-pdf.pdf}{pdf}) \end{itemize} Textbook accounts and lecture notes include \begin{itemize}% \item [[Tammo tom Dieck]], \emph{[[Transformation Groups and Representation Theory]]} Lecture Notes in Mathematics 766 Springer 1979 \item [[Tammo tom Dieck]], sections 5.1 and 5.4 of \emph{Representation theory}, 2009 (\href{http://www.uni-math.gwdg.de/tammo/rep.pdf}{pdf}) \item Klaus Lux, Herbert Pahlings, section 3.5 of \emph{Representations of groups -- A computational approach}, Cambridge University Press 2010 (\href{http://www.math.rwth-aachen.de/~RepresentationsOfGroups/}{author page}, \href{http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521768078}{publisher page}) \end{itemize} Computer implementation is discussed in \begin{itemize}% \item \href{https://www.gap-system.org/}{GAP} \href{https://www.gap-system.org/Manuals/doc/ref/chap0.html}{Reference Manual}, \emph{\href{https://www.gap-system.org/Manuals/doc/ref/chap70.html}{70 Tables of Marks}} \end{itemize} See also \begin{itemize}% \item [[Götz Pfeiffer]], \emph{The Subgroups of $M_{24}$, or How to Compute the Table of Marks of a Finite Group}, Experiment. Math. 6 (1997), no. 3, 247–270 (\href{https://doi.org/10.1080/10586458.1997.10504613}{doi:10.1080/10586458.1997.10504613}, \href{http://schmidt.ucg.ie/~goetz/pub/marks/marks.html}{web}) \item Liam Naughton, [[Götz Pfeiffer]], \emph{Computing the table of marks of a cyclic extension}, Math. Comp. 81 (2012), no. 280, 2419–2438. \item Brendan Masterson, [[Götz Pfeiffer]], \emph{On the Table of Marks of a Direct Product of Finite Groups}, Journal of Algebra Volume 499, 1 April 2018, Pages 610-644 (\href{https://arxiv.org/abs/1704.03433}{arXiv:1704.03433}) \end{itemize} [[!redirects tables of marks]] [[!redirects Burnside mark]] [[!redirects Burnside marks]] [[!redirects Burnside character]] [[!redirects Burnside characters]] [[!redirects mark homomorphism]] [[!redirects mark homomorphisms]] \end{document}