\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tangent (infinity,1)-category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{goodwillie_calculus}{}\paragraph*{{Goodwillie calculus}}\label{goodwillie_calculus} [[!include Goodwillie calculus - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{PresentabilityAndLimits}{Presentability and limits}\dotfill \pageref*{PresentabilityAndLimits} \linebreak \noindent\hyperlink{RelationToModules}{Relation to modules}\dotfill \pageref*{RelationToModules} \linebreak \noindent\hyperlink{CotangentComplex}{Cotangent complex}\dotfill \pageref*{CotangentComplex} \linebreak \noindent\hyperlink{TangentTopos}{Tangent $\infty$-topos of an $\infty$-topos}\dotfill \pageref*{TangentTopos} \linebreak \noindent\hyperlink{TangentToposGeneral}{General}\dotfill \pageref*{TangentToposGeneral} \linebreak \noindent\hyperlink{as_the_classifying_topos_for_a_universal_stable_object}{As the classifying $\infty$-topos for a universal stable object}\dotfill \pageref*{as_the_classifying_topos_for_a_universal_stable_object} \linebreak \noindent\hyperlink{cohesive_tangent_topos_of_a_cohesive_topos}{Cohesive tangent $\infty$-topos of a cohesive $\infty$-topos}\dotfill \pageref*{cohesive_tangent_topos_of_a_cohesive_topos} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{of_rings}{Of $E_\infty$-rings}\dotfill \pageref*{of_rings} \linebreak \noindent\hyperlink{ExamplesTangentOfAnInfinityTopos}{Of an $\infty$-topos}\dotfill \pageref*{ExamplesTangentOfAnInfinityTopos} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} For $K$ a [[locally presentable (∞,1)-category]] whose objects we think of as [[space]]s of sorts, its \textbf{tangent $(\infty,1)$-category} \begin{displaymath} (T_{K^{op}})^{op} \to K \end{displaymath} is an [[(∞,1)-category]] over $K$, whose objects may be thought of as spaces that are \textbf{[[infinitesimal space|infinitesimal]] thickenings} of those of $K$. More concretely, the tangent $(\infty,1)$-category $T_C \to C$ for $C = K^{op}$ is the fiberwise [[stabilization]] of the [[codomain fibration]] $Func(\Delta[1], C) \to C$. This generalizes -- as discussed at [[deformation theory]] -- the classical example of the [[bifibration]] [[Mod]] $\to$ [[CRing]] of the category of all [[module]]s over the cateory [[CRing]] of all commutative rings: the fiber of the tangent $(\infty,1)$-category $T_C$ over an object $A \in C$ may be thought of as the $(\infty,1)$-category of \textbf{square-0-extensions} $A \oplus N$ of $A$, for $N$ a [[module]] over $A$. Dually, in $K = C^{op}$ we may think of these as being infinitesimal neighbourhoods of 0-sections of [[vector bundle]]s -- or rather of [[quasicoherent sheaves]] -- over whatever [[space]] $A$ is regarded to be the algebra of functions on. A remarkable amount of information about the geometry of these spaces/objects in $K$ is encoded in the fiber of the tangent $(\infty,1)$-category over them. Notably the [[left adjoint|left]] [[adjoint (∞,1)-functor]] \begin{displaymath} \Omega : C \to T_C \end{displaymath} to the domain projection $dom : T_C \to C$ turns out to send each $A$ to its [[cotangent complex]] $\Omega(A)$, to be thought of as the module of [[Kähler differentials]] on the space that $A$ is functions on. A [[category theory|1-categorical]] approximation to the notion of tangent $(\infty,1)$-category is that of [[tangent category]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $\mathcal{C}$ be a [[locally presentable (∞,1)-category]]. \begin{defn} \label{FiberwiseStabilization}\hypertarget{FiberwiseStabilization}{} \textbf{(fiberwise stabilization)} For $\mathcal{C}' \to \mathcal{C}$ a [[model structure for quasi-categories|categorical fibration]], [[generalized the|the]] \textbf{fiberwise stabilization} $Stab(\mathcal{C}' \to \mathcal{C})$ is -- roughly -- the fibration universal with the property that for each $A \in C$ its [[fiber]] over $A$ is the [[stabilization]] $Stab(\mathcal{C}'_A)$ of the fiber $\mathcal{C}'_A$ over $A$. \end{defn} This is (\hyperlink{Lurie}{Lurie, section 1.1}) formulated in view of (\hyperlink{Lurie}{Lurie, remark 1.1.8}). There $Stab(\mathcal{C}' \to \mathcal{C})$ is called the \emph{stable envelope} . \begin{defn} \label{TangentCategory}\hypertarget{TangentCategory}{} \textbf{(tangent $(\infty,1)$-category)} [[generalized the|The]] \textbf{tangent $(\infty,1)$-category} $T_{\mathcal{C}} \to \mathcal{C}$ is [[generalized the|the]] \emph{fiberwise stabilization} of the [[codomain fibration]] $cod : \mathcal{C}^{\Delta^1} \to \mathcal{C}$: \begin{displaymath} (T_{\mathcal{C}} \stackrel{p}{\to} \mathcal{C}) := Stab(Func(\Delta[1], \mathcal{C}) \stackrel{cod}{\to} \mathcal{C} ) \,. \end{displaymath} \end{defn} This is [[Deformation Theory|DT, def 1.1.12]]. For a maybe more explicit definition see below at \emph{\hyperlink{TangentToposGeneral}{Tangent ∞-topos -- General}}. Explicitly, the tangent $\infty$-category is given as follows. \begin{remark} \label{TangentCatByExplicitFiberwiseStabilization}\hypertarget{TangentCatByExplicitFiberwiseStabilization}{} Given a presentable [[(∞,1)-category]] $\mathcal{C}$, the [[(∞,1)-functor]] \begin{displaymath} \chi_{cod} \colon \mathcal{C}^{op} \to (\infty,1)Cat \end{displaymath} which classifies the [[codomain fibration]] $cod \colon \mathcal{C}^{\Delta^1} \to \mathcal{C}$ under the [[(∞,1)-Grothendieck construction]] factors through the wide non-full inclusion \begin{displaymath} (\infty,1)Cat^R \to (\infty,1)Cat \end{displaymath} of [[(∞,1)-functors]] which are [[right adjoint|right]] [[adjoint (∞,1)-functors]]. For these the further (now full) inclusion \begin{displaymath} i \colon (\infty,1)StabCat^R \hookrightarrow (\infty,1)Cat^R \end{displaymath} of the [[stable (∞,1)-categories]] has a [[right adjoint|right]] [[adjoint (∞,1)-functor]] \begin{displaymath} (i \dashv Stab) \end{displaymath} given by [[stabilization]]. (Note that this is not a functor on all of $(\infty,1)Cat$, where instead the obstructions to functoriality are given by [[Goodwillie calculus]].) So the classifying map of the codomain fibration factors through this and hence we can postcompose with the [[stabilization]] functor to obtain \begin{displaymath} i \circ Stab i \chi_{cod} \colon \mathcal{C}^{op} \to (\infty,1)Cat \,. \end{displaymath} This sends an object $c \in \mathcal{C}$ to the [[stabilization]] of the [[slice (∞,1)-category]] over $c$: \begin{displaymath} Stab \circ \chi_{cod} \colon c \mapsto Stab(\mathcal{C}_{/c}) \,. \end{displaymath} Again by the [[(∞,1)-Grothendieck construction]] this classifies a [[Cartesian fibration]] over $\mathcal{C}$ and this now is the tangent $(\infty,1)$-category projection \begin{displaymath} \itexarray{ T_{\mathcal{C}} \\ \downarrow^{\mathrlap{p}} \\ \mathcal{C} } \,. \end{displaymath} \end{remark} This is the first part of the proof of [[Deformation Theory|DT. prop. 1.1.9]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{PresentabilityAndLimits}{}\subsubsection*{{Presentability and limits}}\label{PresentabilityAndLimits} \begin{prop} \label{}\hypertarget{}{} The tangent $(\infty,1)$-category $T_C$ of the [[locally presentable (∞,1)-category]] $C$ is itself a locally presentable $(\infty,1)$-category. In particular, it admits all [[(∞,1)-limit]]s and [[(∞,1)-colimit]]s. \end{prop} This is (\hyperlink{Lurie}{Lurie, prop. 1.1.13}). Moreover: \begin{prop} \label{}\hypertarget{}{} A diagram in the tangent $(\infty,1)$-category $T_{\mathcal{C}}$ is an [[(∞,1)-limit|(∞,1)-(co-)limit]] precisely if \begin{enumerate}% \item it is a [[relative (infinity,1)-limit|relative (∞,1)-(co-)limit]] with respect to the projection $p \colon T_{\mathcal{C}} \to \mathcal{C}$; \item its image under this projection is an [[(∞,1)-limit|(∞,1)-(co-)limit]] in $\mathcal{C}$. \end{enumerate} \end{prop} (\hyperlink{LurieHigherAlgebra}{Lurie, HigherAlgebra, prop. 8.3.1.12}) \hypertarget{RelationToModules}{}\subsubsection*{{Relation to modules}}\label{RelationToModules} We discuss how the tangent $(\infty,1)$-category construction indeed generalizes the equivalence between the [[tangent category]] over [[CRing]] and the category [[Mod]] of all [[modules]] over commutative rings. \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{O}^\otimes$ be a [[coherent (∞,1)-operad]] and let $\mathcal{C}^\otimes \to \mathcal{O}^\otimes$ be a [[stable (∞,1)-category|stable]] $\mathcal{O}$-[[monoidal (∞,1)-category]]. Let \begin{displaymath} A \in Alg_\mathcal{O}(\mathcal{C}) \end{displaymath} be an $\mathcal{O}$-[[algebra over an (infinity,1)-operad|algebra]] in $\mathcal{C}$. Then the [[stabilization]] of the [[over-(∞,1)-category]] over $A$ is canonically equivalent to $Func_\mathcal{O}(\mathcal{O}, Mod_A^\mathcal{O}(\mathcal{C}))$ \begin{displaymath} Stab( Alg_\mathcal{O}(\mathcal{C})/A) \simeq Func_\mathcal{O}(\mathcal{O}, Mod_A^\mathcal{O}(\mathcal{C})) \,. \end{displaymath} \end{prop} This is (\hyperlink{Lurie}{Lurie, theorem 1.5.14}). \begin{prop} \label{}\hypertarget{}{} Let $\mathcal{O}^\otimes$ be a [[coherent (∞,1)-operad]] and let $\mathcal{C}^\otimes \to \mathcal{O}^\otimes$ be a [[presentable (∞,1)-category|presentable]] [[stable (∞,1)-category|stable]] $\mathcal{O}$-[[monoidal (∞,1)-category]]. Then there is a canonical [[equivalence of (∞,1)-categories|equivalence]] \begin{displaymath} \phi : T_{Alg_\mathcal{O}(\mathcal{C})} \stackrel{\simeq}{\to} Alg_\mathcal{O}(\mathcal{C}) \times_{Func(\mathcal{O}, Alg_\mathcal{O}(\mathcal{C}))} Func_\mathcal{O}(\mathcal{O}, Mod^\mathcal{O}(\mathcal{C})) \end{displaymath} of presentble [[Cartesian fibration|fibrations]] over $Alg_\mathcal{O}(\mathcal{C})$. \end{prop} This is (\hyperlink{Lurie}{Lurie, theorem, 1.5.19}). In words this says that under the given assumptions, objects of $T_{\mathcal{C}}$ may be identified with pairs \begin{displaymath} (A, N) \end{displaymath} where \begin{itemize}% \item $A$ is an $\mathcal{O}$-[[∞-algebra over an (∞,1)-operad|algebra]] in $\mathcal{C}$; \item $N$ is an $A$-[[∞-module over an ∞-algebra over an (∞,1)-operad|module]]. \end{itemize} \hypertarget{CotangentComplex}{}\subsubsection*{{Cotangent complex}}\label{CotangentComplex} From its definition as the fiberwise stabilization of the [[codomain fibration]] $cod : Func(\Delta[1], C) \to C$ the tangent $(\infty,1)$-category $p : T_C \to C$ inherits a second $(\infty,1)$-functor to $C$, coming from the \emph{domain} evaluation \begin{displaymath} dom : T_C \to C \,. \end{displaymath} \begin{prop} \label{CotangentComplexAdjunction}\hypertarget{CotangentComplexAdjunction}{} \textbf{(cotangent complex)} The domain evaluation $dom : T_C \to C$ admits a [[left adjoint|left]] [[adjoint (∞,1)-functor]] \begin{displaymath} (\Omega \dashv dom) : T_C \stackrel{\overset{\Omega}{\leftarrow}}{\underset{dom}{\to}} C \end{displaymath} that is also a [[section]] of $p : T_C \to C$ in that \begin{displaymath} (C \stackrel{\Omega}{\to} T_C \stackrel{p}{\to} C) \simeq Id_C \end{displaymath} and which hence exhibits $C$ as a [[retract]] of $T_C$. This $\Omega$ is the \textbf{cotangent complex $(\infty,1)$-functor} : for $A \in C$ the object $\Omega(A)$ is the [[cotangent complex]] of $A$. \end{prop} This is (\hyperlink{Lurie}{Lurie, def. 1.2.2, remark 1.2.3}). In more detail this adjunction is the composite \begin{displaymath} (\Omega \dashv dom) \;\colon\; T_C \stackrel{\overset{\Sigma^\infty_C}{\leftarrow}}{\underset{\Omega^\infty_{C}}{\to}} C^{\Delta^1} \stackrel{\overset{const}{\leftarrow}}{\underset{dom}{\to}} C \colon \Omega \,, \end{displaymath} where $(\Sigma^\infty_C \dashv \Omega^\infty_C)$ is the fiberwise [[stabilization]] relative adjunction, def. \ref{FiberwiseStabilization}. \hypertarget{TangentTopos}{}\subsubsection*{{Tangent $\infty$-topos of an $\infty$-topos}}\label{TangentTopos} We discuss how the tangent $\infty$-category of an [[(∞,1)-topos]] is itself an [[(∞,1)-topos]] over the tangent $\infty$-category of the original [[base (∞,1)-topos]]. In terms of [[Omega-spectrum]] [[spectrum objects]] this is due to (\hyperlink{Joyal08}{Joyal 08}) joint with [[Georg Biedermann]]. In terms of [[excisive functors]] this is due to observations by [[Georg Biedermann]], [[Charles Rezk]] and [[Jacob Lurie]], see at \emph{\href{n-excisive+%28?%2C1%29-functor#nExcisiveApproximation}{n-Excisive functor -- Properties -- n-Excisive reflection}}. \hypertarget{TangentToposGeneral}{}\paragraph*{{General}}\label{TangentToposGeneral} \begin{defn} \label{}\hypertarget{}{} Let $seq$ be the [[diagram]] category as follows: \begin{displaymath} seq \coloneqq \left\{ \itexarray{ && \vdots && \vdots \\ && \downarrow && \\ \cdots &\to& x_{n-1} &\stackrel{p_{n-1}}{\longrightarrow}& \ast \\ &&{}^{\mathllap{p_{n-1}}}\downarrow &\swArrow& \downarrow^{\mathrlap{i_n}} & \searrow^{\mathrm{id}} \\ &&\ast &\underset{i_n}{\longrightarrow}& x_n &\stackrel{p_n}{\longrightarrow}& \ast \\ && &{}_{\mathllap{id}}\searrow& {}^{\mathllap{p_n}}\downarrow &\swArrow& \downarrow^{\mathrlap{i_{n+1}}} \\ && && \ast &\stackrel{i_{n+1}}{\longrightarrow}& x_{n+1} &\to& \cdots \\ && && && \downarrow \\ && && && \vdots } \right\}_{n \in \mathbb{Z}} \,. \end{displaymath} \end{defn} (\hyperlink{Joyal08}{Joyal 08, section 35.5}) \begin{remark} \label{}\hypertarget{}{} Given an [[(∞,1)-topos]] $\mathbf{H}$, an [[(∞,1)-functor]] \begin{displaymath} X_\bullet \;\colon\; seq \longrightarrow \mathbf{H} \end{displaymath} is equivalently \begin{enumerate}% \item a choice of [[object]] $B \in \mathbf{H}$ (the image of $\ast \in seq$]); \item a sequence of objects $\{X_n\} \in \mathbf{H}_{/B}$ in the [[slice (∞,1)-topos]] over $B$; \item a sequence of [[morphisms]] $X_n \longrightarrow \Omega_B X_{n+1}$ from $X_n$ into the [[loop space object]] of $X_{n+1}$ in the slice. \end{enumerate} This is a [[prespectrum object]] in the [[slice (∞,1)-topos]] $\mathbf{H}_{/B}$. A [[natural transformation]] $f \;\colon \;X_\bullet \to Y_\bullet$ between two such functors with components \begin{displaymath} \left\{ \itexarray{ X_n &\stackrel{f_n}{\longrightarrow}& Y_n \\ \downarrow^{\mathrlap{p_n^X}} && \downarrow^{\mathrlap{p_n^Y}} \\ B_1 &\stackrel{f_b}{\longrightarrow}& B_2 } \right\} \end{displaymath} is equivalently a morphism of base objects $f_b \;\colon\; B_1 \longrightarrow B_2$ in $\mathbf{H}$ together with morphisms $X_n \longrightarrow f_b^\ast Y_n$ into the [[(∞,1)-pullback]] of the components of $Y_\bullet$ along $f_b$. Therefore the [[(∞,1)-presheaf (∞,1)-topos]] \begin{displaymath} \mathbf{H}^{seq} \coloneqq Func(seq, \mathbf{H}) \end{displaymath} is the [[codomain fibration]] of $\mathbf{H}$ with ``fiberwise pre-stabilization''. A genuine [[spectrum object]] is a [[prespectrum object]] for which all the structure maps $X_n \stackrel{\simeq}{\longrightarrow} \Omega_B X_{n+1}$ are [[equivalence in an (∞,1)-category|equivalences]]. The [[full sub-(∞,1)-category]] \begin{displaymath} T \mathbf{H} \hookrightarrow \mathbf{H}^{seq} \end{displaymath} on the genuine [[spectrum objects]] is therefore the ``fiberwise [[stabilization]]'' of the self-indexing, hence the tangent $(\infty,1)$-category. \end{remark} \begin{lemma} \label{SpectrificationLemma}\hypertarget{SpectrificationLemma}{} \textbf{(spectrification is left exact reflective)} The inclusion of [[spectrum objects]] into $\mathbf{H}^{seq}$ is [[left exact (infinity,1)-functor|left]] [[reflective sub-(infinity,1)-category|reflective]], hence it has a [[left adjoint]] [[(∞,1)-functor]] $L$ -- [[spectrification]] -- which preserves [[finite (∞,1)-limits]]. \begin{displaymath} T \mathbf{H} \stackrel{\overset{L_{lex}}{\leftarrow}}{\hookrightarrow} \mathbf{H}^{seq} \,. \end{displaymath} \end{lemma} (\hyperlink{Joyal08}{Joyal 08, section 35.1}) \begin{proof} Forming degreewise [[loop space objects]] constitutes an [[(∞,1)-functor]] $\Omega \colon \mathbf{H}^{seq} \longrightarrow \mathbf{H}^{seq}$ and by definition of $seq$ this comes with a [[natural transformation]] out of the identity \begin{displaymath} \theta \;\colon\; id \longrightarrow \Omega \,. \end{displaymath} This in turn is compatible with $\Omega$ in that \begin{displaymath} \theta \circ \Omega \simeq \Omega \circ \theta \;\colon\; \rho \longrightarrow \rho \circ \rho = \rho^2 \,. \end{displaymath} Consider then a sufficiently deep [[transfinite composition]] $\rho^{tf}$. By the [[small object argument]] available in the [[presentable (∞,1)-category]] $\mathbf{H}$ this stabilizes, and hence provides a [[reflective sub-(infinity,1)-category|reflection]] $L \;\colon\; \mathbf{H}^{seq} \longrightarrow T \mathbf{H}$. Since [[transfinite composition]] is a [[filtered (∞,1)-colimit]] and since in an [[(∞,1)-topos]] these commute with [[finite (∞,1)-limits]], it follows that spectrum objects are an [[exact (∞,1)-functor|left exact]] [[reflective sub-(∞,1)-category]]. \end{proof} \begin{prop} \label{}\hypertarget{}{} For $\mathbf{H}$ an [[(∞,1)-topos]] over the [[base (∞,1)-topos]] $\infty Grpd$, its [[tangent (∞,1)-category]] $T \mathbf{H}$ is an [[(∞,1)-topos]] over the base $T \infty Grpd$ (and hence in particular also over $\infty Grpd$ itself). \end{prop} (\hyperlink{Joyal08}{Joyal 08, section 35.5}) \begin{proof} By the the spectrification lemma \ref{SpectrificationLemma} $T \mathbf{H}$ has a [[geometric embedding]] into the [[(∞,1)-presheaf (∞,1)-topos]] $\mathbf{H}^{seq}$, and this implies that it is an [[(∞,1)-topos]] (by the discussion there). Moreover, since both [[adjoint (∞,1)-functor]] in the [[global section geometric morphism]] $\mathbf{H} \stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\longrightarrow}} \infty Grpd$ preserve [[finite (∞,1)-limits]] they preserve [[spectrum objects]] and hence their immediate [[(∞,1)-presheaf]] prolongation immediately restricts to the inclusion of spectrum objects \begin{displaymath} \itexarray{ T \mathbf{H} &\stackrel{\overset{T \Delta}{\leftarrow}}{\underset{T \Gamma}{\longrightarrow}}& T \infty Grpd \\ \downarrow^{\mathrlap{incl}} && \downarrow^{\mathrlap{incl}} \\ \mathbf{H} & \stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\longrightarrow}} & \infty Grpd } \,. \end{displaymath} \end{proof} \begin{remark} \label{}\hypertarget{}{} This statement also follows from the general theory of [[excisive functors]], and in this form it is due to [[Charles Rezk]]. See at \emph{\href{n-excisive+%28?%2C1%29-functor#nExcisiveApproximation}{n-Excisive functor -- Properties -- n-Excisive reflection}} for the above fact and its generalization to ``[[Goodwillie calculus|Goodwillie]] [[jet bundles]]''. \end{remark} \begin{remark} \label{}\hypertarget{}{} We may think of the tangent $\infty$-topos $T \mathbf{H}$ as being an [[extension]] of $\mathbf{H}$ by its [[stabilization]] $Stab(\mathbf{H}) \simeq T_\ast \mathbf{H}$: \begin{displaymath} \itexarray{ Stab(\mathbf{H}) &\stackrel{\overset{Stab(\Delta)}{\leftarrow}}{\underset{Stab(\Gamma)}{\longrightarrow}}& Sp \\ \downarrow && \downarrow \\ T\mathbf{H} &\stackrel{\overset{T\Delta}{\leftarrow}}{\underset{T\Gamma}{\longrightarrow}}& T \infty Grpd \\ \downarrow^{\mathrlap{base}} && \downarrow^{\mathrlap{base}} \\ \mathbf{H} &\stackrel{\overset{\Delta}{\leftarrow}}{\underset{\Gamma}{\longrightarrow}}& \infty Grpd } \,. \end{displaymath} Crucial for the internal interpretation in [[homotopy type theory]] is that the [[homotopy types]] in $T_\ast \mathbf{H} \hookrightarrow T \mathbf{H}$ are [[stable homotopy types]]. \end{remark} \hypertarget{as_the_classifying_topos_for_a_universal_stable_object}{}\paragraph*{{As the classifying $\infty$-topos for a universal stable object}}\label{as_the_classifying_topos_for_a_universal_stable_object} One may understand $T \mathbf{H}$ as the result of adjoining to $\mathbf{H}$ a universal ``stable object'' \begin{displaymath} T \mathbf{H}\simeq \mathbf{H}[X_\ast][ (\Sigma \Omega X_\ast^\bullet \to X_\ast^\bullet)^{-1} ] \,. \end{displaymath} For details see at \emph{[[excisive (∞,1)-functor]]} the section \emph{\href{excisive+%28%E2%88%9E%2C1%29-functor#CharacterizationViaAGenericStableObject}{Characterization via a generic stable object}}. \hypertarget{cohesive_tangent_topos_of_a_cohesive_topos}{}\paragraph*{{Cohesive tangent $\infty$-topos of a cohesive $\infty$-topos}}\label{cohesive_tangent_topos_of_a_cohesive_topos} Assume that $\mathbf{H}$ is a [[cohesive (∞,1)-topos]] over [[∞Grpd]], in that there is an [[adjoint quadruple]] \begin{displaymath} \mathbf{H} \stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{\underset{coDisc}{\leftarrow}}}} \infty Grpd \end{displaymath} with $Disc, coDisc$ being [[full and faithful (∞,1)-functors]] and $\Pi$ preserving finite [[(∞,1)-products]]. Since [[(∞,1)-limits]] and [[(∞,1)-colimits]] in an [[(∞,1)-presheaf (∞,1)-topos]] are computed objectwise, this [[adjoint quadruple]] immediately prolongs to $\mathbf{H}^{seq}$ \begin{displaymath} \mathbf{H}^{seq} \stackrel{\overset{\Pi^{seq}}{\longrightarrow}}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} \infty Grpd^{seq} \,. \end{displaymath} Moreover, all three [[right adjoints]] preserves the [[(∞,1)-pullbacks]] involved in the characterization of [[spectrum objects]] and hence restrict to $T \mathbf{H}$ \begin{displaymath} T\mathbf{H} \stackrel{}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} T\infty Grpd \,. \end{displaymath} But then we have a further [[left adjoint]] given as the composite \begin{displaymath} T\mathbf{H} \hookrightarrow \mathbf{H}^{seq} \stackrel{\overset{\Pi^{seq}}{\longrightarrow}}{\underset{Disc^{seq}}{\leftarrow}} \infty Grpd^{seq} \stackrel{\overset{L}{\longrightarrow}}{\underset{}{\leftarrow}} T \infty Grpd \,. \end{displaymath} Again since $L$ is a [[left exact (∞,1)-functor]] this composite $L \Pi$ preserves finite [[(∞,1)-products]]. So it follows in conclusion that if $\mathbf{H}$ is a [[cohesive (∞,1)-topos]] then its tangent $(\infty,1)$-category $T \mathbf{H}$ is itself a [[cohesive (∞,1)-topos]] over the tangent $(\infty,1)$-category $T \infty Grpd$ of the [[base (∞,1)-topos]], which is an [[extension]] of the cohesion of the $\infty$-topos $\mathbf{H}$ over $\infty Grpd$ by the cohesion of the stable $\infty$-category $Stab(\mathbf{H})$ over $Stab(\infty Grpd) \simeq Spec$: \begin{displaymath} \itexarray{ Stab(\mathbf{H}) & \stackrel{\overset{L\Pi^{seq}}{\longrightarrow}}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} & Stab(\infty Grpd) \\ \downarrow^{\mathrlap{incl}} && \downarrow^{\mathrlap{incl}} \\ T \mathbf{H} & \stackrel{\overset{L\Pi^{seq}}{\longrightarrow}}{\stackrel{\overset{Disc^{seq}}{\leftarrow}}{\stackrel{\overset{\Gamma^{seq}}{\longrightarrow}}{\underset{coDisc^{seq}}{\leftarrow}}}} & T \infty Grpd \\ {}^{\mathllap{base}}\downarrow {}^{\mathllap{0}}\uparrow \downarrow^{\mathrlap{base}} \uparrow^{\mathrlap{0}} && {}^{\mathllap{base}}\downarrow {}^{\mathllap{0}}\uparrow \downarrow^{\mathrlap{base}} \uparrow^{\mathrlap{0}} \\ \mathbf{H} & \stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{\underset{coDisc}{\leftarrow}}}} & \infty Grpd } \,. \end{displaymath} For more on this see at \emph{[[tangent cohesive (∞,1)-topos]]}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{of_rings}{}\subsubsection*{{Of $E_\infty$-rings}}\label{of_rings} \begin{cor} \label{}\hypertarget{}{} Let $E_\infty$ be the [[(∞,1)-category]] of [[E-∞ ring]]s and let $A \in E_\infty$. Then the [[stabilization]] of the [[over-(∞,1)-category]] over $A$ \begin{displaymath} Stab(E_\infty/A) \simeq A Mod(Spec) \end{displaymath} is equivalent to the category of $A$-[[module spectra]]. \end{cor} (\hyperlink{Lurie}{Lurie, cor. 1.5.15}). \hypertarget{ExamplesTangentOfAnInfinityTopos}{}\subsubsection*{{Of an $\infty$-topos}}\label{ExamplesTangentOfAnInfinityTopos} We discuss here aspects of the tangent $\infty$-categories of [[(∞,1)-toposes]]. First consider the [[base (∞,1)-topos]] $\mathbf{H} =$ [[∞Grpd]]. \begin{remark} \label{SliceOfinfinityGroupoidsIsFunctorCategory}\hypertarget{SliceOfinfinityGroupoidsIsFunctorCategory}{} For each [[∞-groupoid]]/[[homotopy type]] $X \in \infty Grpd$. there is a [[natural equivalence|natural]] [[equivalence of (∞,1)-categories]] \begin{displaymath} \infty Grpd_{/X} \simeq Func(X, \infty Grpd) \end{displaymath} between the [[slice (∞,1)-category]] of [[∞Grpd]] over $X$ and the [[(∞,1)-functor (∞,1)-category]] of maps $X \to \infty Grpd$. \end{remark} \begin{proof} By the [[(∞,1)-Grothendieck construction]]. \end{proof} \begin{prop} \label{}\hypertarget{}{} For each [[∞-groupoid]]/[[homotopy type]] $X \in \infty Grpd$. there is a [[natural equivalence|natural]] [[equivalence of (∞,1)-categories]] \begin{displaymath} T_X (\infty Grpd) \simeq Func(X, Spec) \end{displaymath} between the fiber of the tangent (∞,1)-category of [[∞Grpd]] over $X$, def. \ref{TangentCategory}, and the [[(∞,1)-category]] of [[parameterized spectra]] over $X$. \end{prop} \begin{proof} Applying remark \ref{SliceOfinfinityGroupoidsIsFunctorCategory} in remark \ref{TangentCatByExplicitFiberwiseStabilization} yields that \begin{displaymath} T_X(\infty Grpd) \simeq Stab(Func(X,\infty Grpd)) \,. \end{displaymath} The statement then follows with the ``\href{stable%20%28infinity,1%29-category#StabGiraud}{stable Giraud theorem}''. \end{proof} \begin{remark} \label{}\hypertarget{}{} This means that the tangent $(\infty,1)$-category $T(\infty Grpd)$ is equivalently what in (\hyperlink{Joyal08}{Joyal 08, section 30.34}) is denoted $D(Kan, X)$ in the case that $X = Spec$ is the [[(∞,1)-category of spectra]]. \end{remark} \begin{prop} \label{TangentOfInfinityGrpdIsTopos}\hypertarget{TangentOfInfinityGrpdIsTopos}{} The tangent $(\infty,1)$-category $T (\infty Grpd)$ is itself an [[(∞,1)-topos]]. \end{prop} \begin{proof} With the above equivalence this is (\hyperlink{Joyal08}{Joyal 08, section 35.5, 35.6} (with [[Georg Biedermann]])). \end{proof} \begin{remark} \label{}\hypertarget{}{} The [[terminal object in an (∞,1)-category|terminal object]] in $T \infty Grpd$ should be the [[zero spectrum]] regarded as a parameterized spectrum over the point \begin{displaymath} 0 \colon \ast \to Spec \,. \end{displaymath} \end{remark} From this it follows that \begin{remark} \label{}\hypertarget{}{} The [[global elements]]/[[global sections]] functor (which forms the [[derived hom space|(∞,1)-categorical mapping space]] out of the terminal object) \begin{displaymath} \Gamma \coloneqq Hom(\ast, -) \;\colon\; T(\infty Grpd) \to \infty Grpd \end{displaymath} sends an $X$-[[parameterized spectrum]] to its base homotopy type $X$. This functor has a [[left adjoint|left]] and [[right adjoint|right]] [[adjoint (∞,1)-functor]] both given by sending $X$ to the [[zero spectrum]] bundle over $X$. So we have an infinite chain of [[adjoint (∞,1)-functors]] \begin{displaymath} (\cdots base \dashv 0 \dashv base \dashv 0 \dashv \cdots) \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} The functor $0$ is a [[full and faithful (∞,1)-functor]] \begin{displaymath} 0 \;\colon\; \infty Grpd \hookrightarrow T \infty Grpd \end{displaymath} and so the tangent $(\infty,1)$-category is [[cohesive (∞,1)-topos|cohesive]] over [[∞Grpd]], hence by prop. \ref{TangentOfInfinityGrpdIsTopos} $T(\infty Grpd)$ is a [[cohesive (∞,1)-topos]]: \begin{displaymath} (\Pi \dashv Disc \dashv \Gamma \dashv coDisc) \; \colon \; T(\infty Grpd) \stackrel{\overset{base}{\longrightarrow}}{\stackrel{\overset{0}{\leftarrow}}{\stackrel{\overset{base}{\longrightarrow}}{\underset{0}{\leftarrow}}}} \infty Grpd \,. \end{displaymath} Recalling that here $base = cod \circ \Omega^\infty$, we have one more adjunction, the [[cotangent complex]] adjunction due to prop. \ref{CotangentComplexAdjunction} \begin{displaymath} \infty Grpd \stackrel{ \overset{\Omega}{\longrightarrow} } {\underset{dom\circ \Omega^{\infty}}{\leftarrow}} T(\infty Grpd) \stackrel{\overset{base}{\longrightarrow}}{\stackrel{\overset{0}{\leftarrow}}{\stackrel{\overset{base}{\longrightarrow}}{\underset{0}{\leftarrow}}}} \infty Grpd \,. \end{displaymath} \end{remark} \begin{remark} \label{}\hypertarget{}{} For $\mathbf{H}$ a general [[(∞,1)-topos]] the above discussion goes through essentially verbatim. If $\mathbf{H}$ is itself [[cohesive (∞,1)-topos|cohesive]], then we end up with \begin{displaymath} \mathbf{H} \stackrel{\overset{\Omega}{\longrightarrow}}{\underset{dom}{\leftarrow}} T\mathbf{H} \stackrel{\overset{base}{\longrightarrow}}{\stackrel{\overset{0}{\leftarrow}}{\stackrel{\overset{base}{\longrightarrow}}{\underset{0}{\leftarrow}}}} \mathbf{H} \stackrel{}{\stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{\underset{coDisc}{\leftarrow}}}}} \infty Grpd \,. \end{displaymath} \end{remark} \begin{prop} \label{DifferentialOfCohesiveGlobalSections}\hypertarget{DifferentialOfCohesiveGlobalSections}{} For $\mathbf{H}$ a [[locally ∞-connected (∞,1)-topos]] (hence in particular for a [[cohesive (∞,1)-topos]]), there are canonical [[(∞,1)-functors]] \begin{displaymath} T \mathbf{H} \stackrel{\overset{T Disc}{\leftarrow}}{\underset{T \Gamma}{\longrightarrow}} T \infty Grpd \end{displaymath} and such that $T \Gamma$ covers the [[global section]] [[geometric morphism]] $\Gamma \;\colon\; \mathbf{H} \longrightarrow \infty Grpd$ in that it fits into a square \begin{displaymath} \itexarray{ T \mathbf{H} &\stackrel{}{\stackrel{}{\stackrel{\overset{T\Gamma}{\longrightarrow}}{}}}& T \infty Grpd \\ {}^{\mathllap{0}}\uparrow\downarrow^{base} && {}^{\mathllap{0}}\uparrow\downarrow^{base} \\ \mathbf{H} &\stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{}}}& \infty Grpd } \end{displaymath} \end{prop} \begin{proof} By definition of [[stabilization]], $T \mathbf{H}$ is the [[(∞,1)-Grothendieck construction]] of \begin{displaymath} X \mapsto \underset{\leftarrow}{\lim} \left( \cdots \stackrel{\Omega}{\to} \mathbf{H}^{\ast/}_{/X} \stackrel{\Omega}{\to} \mathbf{H}^{\ast/}_{/X} \stackrel{\Omega}{\to} \cdots \right) \,. \end{displaymath} Since the [[loop space object]] [[(∞,1)-functor]] $\Omega$ is an [[(∞,1)-limit]] construction and since the [[right adjoint]] [[global section]] functor $\Gamma$ preserves all [[(∞,1)-limits]], there is a homotopy-[[commuting diagram]] \begin{displaymath} \itexarray{ \cdots &\stackrel{\Omega}{\to}& \mathbf{H}^{\ast/}_{/X} &\stackrel{\Omega}{\to}& \mathbf{H}^{\ast/}_{/X} &\stackrel{\Omega}{\to}& \cdots \\ && \downarrow^{\mathrlap{\Gamma}} && \downarrow^{\mathrlap{\Gamma}} \\ \cdots &\stackrel{\Omega}{\to}& \infty Grpd^{\ast/}_{/\Gamma(X)} &\stackrel{\Omega}{\to}& \infty Grpd^{\ast/}_{/\Gamma(X)} &\stackrel{\Omega}{\to}& \cdots } \end{displaymath} in [[(∞,1)Cat]]. This induces a natural morphism \begin{displaymath} Stab(\mathbf{H}_{/X}) \longrightarrow Stab(\infty Grpd_{/\Gamma(X)}) \end{displaymath} and hence a morphism \begin{displaymath} T \mathbf{H} \simeq \int_{X \in \mathbf{H}} Stab(\mathbf{H}_{/X}) \longrightarrow \int_{X \in \mathbf{H}} Stab(\infty Grpd_{\Gamma(X)}) \,. \end{displaymath} The morphism in question is the postcomposition of this with pullback/restriction of the [[(∞,1)-Grothendieck construction]] along the [[reflective sub-(∞,1)-category|reflective inclusion]] (by assumption on $\mathbf{H}$) $Disc \;\colon\; \infty Grpd \longrightarrow \mathbf{H}$ \begin{displaymath} T \mathbf{H} \simeq \int_{X \in \mathbf{H}} Stab(\mathbf{H}_{/X}) \longrightarrow \int_{X \in \mathbf{H}} Stab(\infty Grpd_{/\Gamma(X)}) \longrightarrow \int_{S \in \infty Grpd} Stab(\infty Grpd_{/S}) \simeq T \infty Grpd \,, \end{displaymath} where we used that by reflectivity $\Gamma \circ Disc \simeq id$. \end{proof} \begin{remark} \label{}\hypertarget{}{} When $T \mathbf{H}$ is an $\infty$-topos it should carry another structure $\otimes$ of a [[symmetric monoidal (∞,1)-category]], induced by fiberwise [[smash product]] of [[spectrum objects]]\ldots{}. \end{remark} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[parameterized spectra]] \item [[differentiable (∞,1)-category]] \item [[Goodwillie calculus]] \item [[jet (∞,1)-category]] \item [[tangent cohesion]] \item [[deformation theory]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} Discussion of [[model category]] models is in \begin{itemize}% \item [[Stefan Schwede]], section 3 of \emph{Spectra in model categories and applications to the algebraic cotangent complex}, Journal of Pure and Applied Algebra 120 (1997) 104 \end{itemize} The $\infty$-category theoretic definition and study of the notion of \emph{tangent $(\infty,1)$-categories} is from \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Deformation Theory]]} \end{itemize} and \begin{itemize}% \item [[Jacob Lurie]], section 7.3 of \emph{[[Higher Algebra]]} \end{itemize} The [[(infinity,1)-topos]] structure on tangent $(\infty,1)$-categories is discussed in 35.5 of \begin{itemize}% \item [[André Joyal]], \emph{Notes on Logoi}, 2008 (\href{http://www.math.uchicago.edu/~may/IMA/JOYAL/Joyal.pdf}{pdf}) \end{itemize} Presentation by [[model categories]] is discussed in \begin{itemize}% \item [[Yonatan Harpaz]], [[Joost Nuiten]], [[Matan Prasma]], \emph{Tangent categories of algebras over operads} (\href{https://arxiv.org/abs/1612.02607}{arXiv:1612.02607}) \item [[Yonatan Harpaz]], [[Joost Nuiten]], [[Matan Prasma]], \emph{The abstract cotangent complex and Quillen cohomology of enriched categories} (\href{https://arxiv.org/abs/1612.02608}{arXiv:1612.02608}) \item [[Vincent Braunack-Mayer]], \emph{Combinatorial parametrised spectra}, based on the [[schreiber:thesis Braunack-Mayer|PhD thesis]] (\href{https://arxiv.org/abs/1907.08496}{arXiv:1907.08496}) \end{itemize} Generalization to parameterized objects in any [[stable (∞,1)-category]] is discussed in: \begin{itemize}% \item [[Marc Hoyois]], \emph{Topoi of parametrized objects}, Theory and Applications of Categories, Vol. 34, 2019, No. 9, pp 243-248. (\href{https://arxiv.org/abs/1611.02267}{arXiv:1611.02267}, \href{http://www.tac.mta.ca/tac/volumes/34/9/34-09abs.html}{tac:34-09}) \end{itemize} [[!redirects tangent (infinity,1)-categories]] [[!redirects tangent (∞,1)-category]] [[!redirects tangent (∞,1)-categories]] [[!redirects tangent (∞,1)-topos]] [[!redirects tangent (∞,1)-toposes]] [[!redirects tangent (infinity,1)-topos]] [[!redirects tangent (infinity,1)-toposes]] \end{document}