\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tangent category} \begin{quote}% This page is about the construction of ``the tangent category of a category'' by abelianization. For categories equipped with an abstract ``tangent bundle'' construction on their objects, see [[tangent bundle category]]. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{of_a_site}{Of a site}\dotfill \pageref*{of_a_site} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{OrdinaryModules}{Modules as tangents to rings}\dotfill \pageref*{OrdinaryModules} \linebreak \noindent\hyperlink{ModulesOverSmoothAlgebras}{Modules over smooth algebras}\dotfill \pageref*{ModulesOverSmoothAlgebras} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The notion of \textbf{tangent category} of a [[category]] $C$ is an approximation to the notion of [[tangent (∞,1)-category]] in ordinary [[category theory]]. For the moment see there for further motivation. The tangent category $T_C$ of $C$ is effectively the \emph{fiberwise abelianization} of the [[codomain fibration]] $cod : [I,C] \to C$: we may think of it as obtained from the codomain fibration by replacing each [[overcategory]] fiber $[I,C]_A = C/A$ by the corresponding category of abelian [[group object]]s and restricting the morphisms such as to respect the abelian group object structure. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Let $C$ be a [[category]] with [[pullback]]s. Then the \textbf{tangent category} $T_C$ of $C$ is the category whose \begin{itemize}% \item [[object]]s are pairs $(A,\mathcal{A})$ with $A \in Ob(C)$ and with $\mathcal{A}$ a [[Beck module]] over $A$, i.e. an abelian [[group object]] in the [[overcategory]] $C/A$; notice that for $\mathcal{B} \to B$ an object in the overcategory that is equipped with the structure of an abelian group object -- notably with a product $prod_{\mathcal{B}} : \mathcal{B} \times_B \mathcal{B} \to \mathcal{B}$ -- and for $f : A \to B$ any morphism in $C$, the [[pullback]] $f^* \mathcal{B} := A \times_B \mathcal{B}$ in $C$ is naturally equipped with the structure of an abelian group object in $C/A$; \item [[morphism]]s $(f, \mathcal{f}) : (A,\mathcal{A}) \to (B, \mathcal{B})$ are commuting squares \begin{displaymath} \itexarray{ \mathcal{A} &\stackrel{\mathcal{f}}{\to}& \mathcal{B} \\ \downarrow && \downarrow \\ A &\stackrel{f}{\to}& B } \end{displaymath} such that the induced morphism $\mathcal{A} \to f^*\mathcal{B}$ is a morphism of abelian group objects in $C/A$; \item composition of morphisms is given in the evident way by $(f_2, \mathcal{f}_2) \circ (f_1, \mathcal{f}_1) = (f_2 \circ f_1, \mathcal{f}_2 \circ \mathcal{f}_1)$. \end{itemize} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} There is an evident [[functor]] $p : T_C \to C$, the underlying [[codomain fibration]]: \begin{displaymath} p \;\;: \;\; \left( \itexarray{ \mathcal{A} &\stackrel{\mathcal{f}}{\to}& \mathcal{B} \\ \downarrow && \downarrow \\ A &\stackrel{f}{\to}& B } \right) \;\; \mapsto \;\; (A \stackrel{f}{\to} B) \,. \end{displaymath} The fiber over $Id_A$ of this functor is the category of abelian group objects in the [[overcategory]] $C/A$: \begin{displaymath} (T_C)_A \simeq Ab(C/A) \,. \end{displaymath} There is also another functor $q : T_C \to C$, inherited from the [[domain cofibration]] \begin{displaymath} q \;\;: \;\; \left( \itexarray{ \mathcal{A} &\stackrel{\mathcal{f}}{\to}& \mathcal{B} \\ \downarrow && \downarrow \\ A &\stackrel{f}{\to}& B } \right) \;\; \mapsto \;\; (\mathcal{A} \stackrel{\mathcal{f}}{\to} \mathcal{B}) \,, \end{displaymath} where we first forget the abelian group object structure and then project onto the domains. \begin{quote}% (we should be claiming that this functor has a left adjoint which is a section and computes the [[Kähler differentials]] of objects in $C$). \end{quote} \hypertarget{of_a_site}{}\subsubsection*{{Of a site}}\label{of_a_site} We discuss morphisms of [[site]]s from a site to its tangent category. \begin{quote}% check \end{quote} Let $C$ be a category with [[finite limit]]s and let $T_C \to C$ be its tangent category. There is then the 0-section $i : C \to T_C$ which sends $A$ to the terminal object $Id : A\to A$ in the overcategory, equipped, necessarily, with the trivial group structure. This exhibits $C$ as a [[retract]] of $T_C$ \begin{displaymath} (C \stackrel{i}{\to} T_C \stackrel{p}{\to} C) = Id_C \,. \end{displaymath} Assume now that $C^{op}$ has [[pullback]]s and is equipped with a [[coverage]], hence with the structure of a [[site]]. Equip $(T_C)^{op}$ with the [[coverage]] where $\{f_i : U_i \to U\}$ is a cover in $(T_C)^{op}$ precisely if its image $\{p(f_i) : p(U_i) \to p(U)\}$ is a cover in $C^{op}$. Then the 0-section $C^{op} \to (T_C)^{op}$ preserves covers. We claim it also preserves limits: i.e. that $i : C \to T_C$ preserves [[colimit]]s: let $F : K \to C$ be a diagram and $\lim_\to F$ its colimit in $C$. Then let $Q$ be any cocone under $i \circ F$ in $T_C$. By applying $p$ to that cocone we find that there is a unique morphism of cocones $\lim_\to F \to p(Q)$ in $C$. But any morphism of the form $A \to p(B)$ for $A \in C$ and $B \in T_C$ has a unique lift to a morphism $i(A) \to B$ in $T_C$ (because the trivial ablian group is initial, so that the morphism in $T_C$ is fixed by its underlying morphism in $C$). So for any coverage on $C^{op}$ and the above induced coverage on $(T_C)^{op}$, the 0-section $i : C^{op} \to (T_C)^{op}$ is a morphism of sites. Accordingly, we obtain a [[geometric morphism]] of [[category of sheaves|sheaf toposes]] \begin{displaymath} Sh((T_C)^{op}) \stackrel{\leftarrow}{\underset{}{\to}} Sh(C^{op}) \,. \end{displaymath} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{OrdinaryModules}{}\subsubsection*{{Modules as tangents to rings}}\label{OrdinaryModules} \begin{prop} \label{}\hypertarget{}{} For $C =$ [[CRing]] we have $T_C \simeq$ [[Mod]]. \end{prop} (More generally for $C =$ [[Ring]] then $T_C$ is the category of [[bimodules]], see at \emph{\href{Beck+module#OverAssociativeAlgebras}{Beck module -- Over associative algebras}}). \begin{proof} Consider the functor \begin{displaymath} F: Mod \to T_{CRing} \end{displaymath} that sends an $R$-module $N$ to the [[square-0 extension]] ring $R \oplus N \stackrel{p_1}{\to} R$, regarded as an abelian group object in $CRing/R$. The action on morphisms is given as follows: if $(R_1,N_1)$ and $(R_2,N_2)$ are two objects in [[Mod]], then a morphism between them is a pair $(f : R_1 \to R_2, f_*:N_1 \to f^* N_2)$ consisting of a ring homorphism and a morphism of $R_1$ modules from $N_1$ to $R_1 \otimes_f N_2$; the corresponding morphism of rings $R_1\oplus N_1\to R_2\oplus N_2$ is $(r_1,n_1)\mapsto (f(r_1),f_*(n_2))$. The induced morphism of rings $R_1\oplus N_1\to R_1\times_{R_2}(R_2\oplus N_2)\cong R_1\oplus f^*N_2$ is explicitly given by $(r_1,n_1)\mapsto (r_1,f_*(n_1))$ and is easily checked to be a morphism of abelian group objects over $R_1$. Moreover, by the natural isomorphism $R_1\times_{R_2}(R_2\oplus N_2)\cong R_1\oplus f^*N_2$ in $Ab(CRing/R)$, showing that $F:Mod\to T_{CRing}$ is an equivalence is reduced to showing that $F$ is a fibrewise equivalence, i.e., that that for any fixed ring $R$, \begin{displaymath} F_R: Mod_R \to Ab(CRing/R) \end{displaymath} is an [[equivalence of categories]]. This is shown at [[module]]. \end{proof} \begin{prop} \label{}\hypertarget{}{} The domain projection $Mod \to CRing$ has a left adjoint, namely the functor assigning to each commutative ring $A$ the pair $(A, \Omega_A)$, where $\Omega_A$ is the $A$-module of [[Kähler differentials]]. \end{prop} \begin{proof} Let $A$ and $B$ be commutative rings, let $M$ be a $B$-module, and consider $B \oplus M$ as a ring as in the previous proof. Then, to give a ring homomorphism $f : A \to B \oplus M$ is the same as giving a ring homomorphism $f_0 : A \to B$ and an additive homomorphism $f_1 : A \to M$ such that \begin{displaymath} f_1 (x y) = f_0 (x) f_1 (y) + f_0 (y) f_1 (x) \end{displaymath} for all $x$ and $y$ in $A$. But by the universal property of $\Omega_A$, this is the same as giving a morphism $(A, \Omega_A) \to (B, M)$ in $Mod$. \end{proof} \hypertarget{ModulesOverSmoothAlgebras}{}\subsubsection*{{Modules over smooth algebras}}\label{ModulesOverSmoothAlgebras} Let $SmoothAlg$ (or $C^\infty Ring$) be the category of [[smooth algebra]]s. Notice that there is a canonical [[forgetful functor]] \begin{displaymath} U : SmoothAlg \to Ring \end{displaymath} to the underlying ordinary [[ring]]s. \begin{theorem} \label{}\hypertarget{}{} There is an [[equivalence of categories]] \begin{displaymath} T_{SmoothAlg} \stackrel{\simeq}{\to} SmoothAlg \times_{Ring} T_{Ring} \,, \end{displaymath} where on the right we have the strict [[pullback]] (i.e. taken in the 1-category [[Cat]]). \end{theorem} We give the proof below. First some remarks and corollaries. \begin{remark} \label{}\hypertarget{}{} We may regard an object in $T_{SmoothAlg}$ as a module over a [[smooth algebra]]. The above says in particular that modules over smooth algebras are just modules over the underlying ordinary rings. However, the category structure on $T_{SmoothAlg}$ does reflect that modules over smooth algebras have a different nature than just bare modules, notably in that the left adjoint to the projection $T_{SmoothAlg} \to SmoothAlg$ produces the correct $C^\infty$-[[derivation]]s and $C^\infty$-[[Kähler differential]]s (see there) as opposed to the purely algebraic ones. \end{remark} \begin{cor} \label{}\hypertarget{}{} For any category $S$ we have that \begin{displaymath} (T_{SmoothAlg})^S \simeq SmoothAlg^S \times_{Ring^S} (T_{Ring})^S \,. \end{displaymath} So in particular for $S = \Delta$ the [[simplex category]] we have that [[simplicial object|simplicial]] modules over simplicial smooth algebras are as objects just ordinary simplicial modules over the underlying [[simplicial ring]]s. \end{cor} For proving the \hyperlink{TangentOfSmoothAlgTheorem}{above theorem} the main step is the following lemma. \begin{lemma} \label{}\hypertarget{}{} For a fixed smooth algebra $R$, the [[forgetful functor]] \begin{displaymath} U : Ab(SmoothAlg/R) \to Ab(Ring/U(R)) \end{displaymath} is an [[equivalence of categories]]. \end{lemma} \begin{proof} The statement was suggested at some point by [[Thomas Nikolaus]] in discussion with [[Urs Schreiber]], who then asked [[Herman Stel]] to prove it. A writeup is in (\hyperlink{Stel}{Stel}). We discuss in detail that the functor is injective on objects, in that for an any abelian group object in $SmoothAlg/R$ its smooth algebra structure on the underlying ring structure is the \emph{unique} such smooth algebra that makes it an abelian group object over $R$. Whith this it is then easy to see that $U$ is in fact an isomorphism of categories. The crucial property underlying this statement is that the [[Lawvere theory]] $T =$ [[CartSp]] over wich smooth algebras are $T$-algebras is in fact a [[Fermat theory]] in that [[Hadamard's lemma]] holds for [[smooth function]]s in particular on [[Cartesian space]]s. This implies that for every $k \in \mathbb{N}$ and every smooth function $f : \mathbb{R}^k \to \mathbb{R}$ there are [[smooth function]]s $\{h_{i,j} \in C^\infty(\mathbb{R}^k \times \mathbb{R}^k, \mathbb{R})\}_{i,j = 1}^n$ such that the function \begin{displaymath} f \circ + : \mathbb{R}^k \times \mathbb{R}^k \to \mathbb{R} \end{displaymath} has an expansion given for all $p, w \in \mathbb{R}^k$ by \begin{displaymath} f(p+w) = f(p) + \sum_{l = 1}^k w_l \cdot \frac{\partial f}{\partial x_l}(p) + \sum_{i,j} w_i \cdot w_j h_{i,j}(p,w) \,. \end{displaymath} We now use that any [[smooth algebra]] $A$ regarded as a product-preserving functor $A : CartSp \to Set$ reflects these relations in that for all $r, e \in A(k) = U(A)^k$ we have that \begin{displaymath} A(f)(r+e) = A(f)(r) + \sum_{l = 1}^k w_l \cdot A\left(\frac{\partial f}{\partial x_l}\right)(r) + \sum_{i,j} e_i \cdot e_j A(h_{i,j})(r,e) \,. \end{displaymath} Now if $R \in SmoothAlg$ and $A$ is an object in $Ab(SmoothAlgebra/R)$ then in particular its underlying ring will be an object in $Ab(Ring/U(R))$. By the \hyperlink{OrdinaryModules}{above theorem} this means that the underlying ring is a [[square-zero extension]] $U(R) \oplus N$ by some $N \in U(R) Mod$. So it follows every element of $A(1)$ is of the form $(r, \epsilon)$ with $\epsilon \in N$ and we can always write it as \begin{displaymath} (r,0) + (0, \epsilon) \,. \end{displaymath} Moreover, since $A$ is by assumption a group object over $R$, it follows that for all $f \in C^\infty(\mathbb{R}^k , \mathbb{R})$ and for all $r \in R(1)$ we have \begin{displaymath} A(f)(r) = R(f)(r) \,. \end{displaymath} So we only need to know how $A$ acts on mixed terms. The point now is that the above Hadamard-quotient formula reduces the action of any smooth function to just operations of this form $A(f)(r)$ and to ordinary multiplication and addition, so it actually fixes $A(f)$ from the restriction of $A(f)$ to elements of the form $(r,0)$ and the module structure on $N$: \begin{displaymath} A(f)(r +\epsilon) = A(f)(r) + \sum_{l = 1}^k w_l \cdot A\left(\frac{\partial f}{\partial x_l}\right)(r) + 0 \end{displaymath} since $\epsilon_i \cdot \epsilon_j = 0$ in the underlying [[square-0 extension]] of $A$ and hence also in $A$. In summary this shows that the forgetful functor $U$ is injective on objects. The above formula also directly implies, conversely, that the functor is surjective on objects, hence an isomorphism on objects, and moreover that it is a [[full and faithful functor]]. \end{proof} Finally we come to the proof of the \hyperlink{TangentOfSmoothAlgTheorem}{full theorem above} \begin{proof} The above lemma shows that $T_{SmoothAlg} \simeq SmoothAlg \times_{Ring} T_{Ring}$ is a bijection on objects. Since the [[pullback]]s that are involved in the definition of the tangent category $T_{SmoothAlg}$ are preserved by the [[right adjoint]] forgetful functor $U : SmoothAlg \to Ring$ (a special case of the general facts about ), checking bijection on [[hom-set]]s \begin{displaymath} T_{SmoothAlg}(A\to R_1,B \to R_2) \to SmoothAlg \times_{Ring} T_{Ring} ((U(A), R_1), (U(B), R_2)) \end{displaymath} amounts to checking for each $f : R_1 \to R_2$ bijections of hom-sets of abelian group objects \begin{displaymath} Ab(SmoothAlg/R_1)(A, f^* B) \to Ab(Ring/U(R_1))(U(A), f^* U(B)) \,. \end{displaymath} That this is a bijection is the statement of the above lemma. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[tangent (∞,1)-category]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The original observation that $T_{Ring} \simeq Mod$ is due to \begin{itemize}% \item [[Daniel Quillen]], \ldots{} \end{itemize} A discusson of $T_{SmoothAlg}$ is in \begin{itemize}% \item [[Herman Stel]], \emph{[[schreiber:master thesis Stel|∞-Stacks and their Function Algebras]]} \end{itemize} [[!redirects tangent categories]] \end{document}