\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tau-function} This page is about the $\tau$-function in the study of [[soliton]]s and [[integrable model]]s, as invented by Kyoto school. There will be a separate entry for a different notion of [[Ramanujan tau function]]. \hypertarget{motivation}{}\subsection*{{Motivation}}\label{motivation} Quoting Zabrodin, \href{http://arxiv.org/abs/1211.4428}{arxiv/1211.4428}, \begin{quote}% ``In nature'', $\tau$-functions or their logarithms appear as partition functions, different kinds of correlators and their generating functions, and effective actions as functions of coupling constants. \end{quote} \hypertarget{formal_idea}{}\subsection*{{Formal idea}}\label{formal_idea} Sato and Segal have formulated the $\tau$-function as the [[Fredholm determinant]] of certain 1-parameter family of operators on separable Hilbert space. \hypertarget{other_formal_interpretations}{}\paragraph*{{Other formal interpretations}}\label{other_formal_interpretations} $\tau$-functions appear as dependent variables in [[Hirota bilinear equation]]s associated to integrable hierarchies. Tau functions can also be associated to the isomonodromic problems. \hypertarget{references}{}\subsection*{{References}}\label{references} The $\tau$-function has first been introduced in the formalism of [[Clifford group]] of free fermions in study of [[holonomic quantum field]]s \begin{itemize}% \item Mikio Sato, Tetsuji Miwa, Michio Jimbo \end{itemize} The $\tau$-function for [[KP hierarchy]] has originally being studied in \begin{itemize}% \item [[Masaki Kashiwara]], [[Tetsuji Miwa]], \emph{The $\tau$-function of the Kadomtsev-Petviashvili equation transformation groups for soliton equations, I}, Proc. Japan Acad. Ser. A Math. Sci. \textbf{57}, N. 7 (1981), 337-386 \href{http://projecteuclid.org/euclid.pja/1195516327}{euclid} \end{itemize} The background on the context of [[Sato-Segal-Wilson Grassmanian]]s is in \begin{itemize}% \item Andrew Pressley, Graeme Segal, \emph{Loop groups}, Oxford University Press (1988) \item G. Segal, G. Wilson, \emph{Loop groups and equations of KdV type}, Inst. Hautes Etudes Sci. Publ. Math. 61 (1985) 5--65. \end{itemize} Reviews include \begin{itemize}% \item A. Alexandrov, A. Zabrodin, \emph{Free fermions and tau-functions}, J.Geom.Phys. \textbf{67} (2013) 37-80 \href{http://arxiv.org/abs/1212.6049}{arxiv/1212.6049} \href{http://dx.doi.org/10.1016/j.geomphys.2013.01.007}{doi} \item A. Zabrodin, \emph{Bethe ansatz and Hirota equation in integrable models}, \href{http://arxiv.org/abs/1211.4428}{arxiv/1211.4428} \end{itemize} The connection to 2D [[gravity]] is elucidated in \begin{itemize}% \item [[Victor Kac]], [[Albert Schwarz]], \emph{Geometric interpretation of the partition function of 2D gravity} Phys. Lett. B 257 (1991), no. 3-4, 329–334 \href{https://web.phys.ntu.edu.tw/string/matrix/PhysLettB257(1991}{pdf}329\_Kac\_Schwarz\_GeometricInterpretationOfThePartitionFunctionOf2DGravity.pdf) \end{itemize} Some special cases of $\tau$-functions include \begin{itemize}% \item J. Palmer, \emph{Determinants of Cauchy--Riemann operators as $\tau$-functions}, Acta Appl. Math. 18 (1990), 199-223. \end{itemize} Isomonodromic interpretation is stemming already from the works of holonomic fields, and isomonodromic $\tau$-functions are studied also in \begin{itemize}% \item Bertola, Eynard, Harnad, \emph{Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions}, \href{http://arxiv.org/abs/nlin.SI/0410043}{nlin.SI/0410043} \end{itemize} [[Witten conjecture]] is about the equivalence of two approaches to gravity, and boils down to a connection of the $\tau$-function for the KP hierarchy and theory of Riemann surfaces. It has been proved by Kontsevich who also introduced related family of matrix models. \begin{itemize}% \item [[Maxim Kontsevich]], \emph{Intersection theory on the moduli space of curves and the matrix Airy function}, Comm. Math. Phys. \textbf{147} (1992), no. 1, 1--23, \href{http://projecteuclid.org/euclid.cmp/1104250524}{euclid}, \href{http://193.51.104.7/~maxim/TEXTS/intersection_theory_6.pdf}{author's pdf} \item A.Alexandrov, \emph{Enumerative geometry, tau-functions and Heisenberg-Virasoro algebra}, \href{http://arxiv.org/abs/1404.3402}{arxiv/1404.3402} \end{itemize} \begin{quote}% In this paper we establish relations between three enumerative geometry tau-functions, namely the Kontsevich-Witten, Hurwitz and Hodge tau-functions. The relations allow us to describe the tau-functions in terms of matrix integrals, Virasoro constraints and Kac-Schwarz operators. All constructed operators belong to the algebra (or group) of symmetries of the KP hierarchy. \end{quote} Connection of $\tau$-functions to [[dessins d'enfants]] is discussed in \begin{itemize}% \item Jan Ambj\o{}rn, Leonid Chekhov, \emph{The matrix model for dessins d'enfants}, \href{http://arxiv.org/abs/1404.4240}{arxiv/1404.4240} \end{itemize} A connection to elementary geometry is studied (with nice reference list) in \begin{itemize}% \item Adam Doliwa, \emph{Desargues maps and the Hirota-Miwa equation}, \href{https://www.newton.ac.uk/preprints/NI09049.pdf}{pdf} \end{itemize} Recent works on $\tau$-function include \begin{itemize}% \item J. W. van de Leur, A. Yu. Orlov, \emph{Pfaffian and determinantal tau functions I}, \href{http://arxiv.org/abs/1404.6076}{arxiv/1404.6076} \item [[Mattia Cafasso]], Chao-Zhong Wu, \emph{Tau functions and the limit of block Toeplitz determinants}, \href{http://arxiv.org/abs/1404.5149}{arxiv/1404.5149} \item J. Harnad, Eunghyun Lee, \emph{Symmetric polynomials, generalized Jacobi-Trudi identities and $\tau$-functions}, \href{http://arxiv.org/abs/1304.0020}{arxiv/1304.0020} \item S. Natanzon, A. Zabrodin, \emph{Formal solution to the KP hierarchy}, \href{http://arxiv.org/abs/1509.04472}{arxiv/1509.04472} \end{itemize} category: physics, representation theory, Lie theory [[!redirects tau-function]] \end{document}