\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tautological line bundle} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{bundles}{}\paragraph*{{Bundles}}\label{bundles} [[!include bundles - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{AsAtopologicalLieBundle}{As a topological line bundle}\dotfill \pageref*{AsAtopologicalLieBundle} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The canonical [[line bundle]] over a [[projective space]] is sometimes called its ``tautological line bundle''. For more see at \emph{[[classifying space]]}. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \hypertarget{AsAtopologicalLieBundle}{}\subsubsection*{{As a topological line bundle}}\label{AsAtopologicalLieBundle} We discuss the tautological line bundle as a [[topological vector bundle]]. Hence let $k$ be the [[topological field]] either \begin{itemize}% \item $k = \mathbb{R}$ the [[real numbers]] \item or $k = \mathbb{C}$ the [[complex numbers]] \end{itemize} equipped with their [[Euclidean space|Euclidean]] [[metric topology]]. \begin{defn} \label{ToplogicalProjectiveSpace}\hypertarget{ToplogicalProjectiveSpace}{} \textbf{(topological [[projective space]])} Let $n \in \mathbb{N}$. Consider the [[Euclidean space]] $k^{n+1}$ equipped with its [[metric topology]], let $k^{n+1} \setminus \{0\} \subset k^{n+1}$ be the [[topological subspace]] which is the [[complement]] of the origin, and consider on its underlying set the [[equivalence relation]] which identifies two points if they differ by [[multiplication]] with some $c \in k$ (necessarily non-zero): \begin{displaymath} (\vec x_1 \sim \vec x_2) \;\Leftrightarrow\; \left( \underset{c \in k}{\exists} ( \vec x_2 = c \vec x_1 ) \right) \,. \end{displaymath} The [[equivalence class]] $[\vec x]$ is traditionally denoted \begin{displaymath} [x_1 : x_2 : \cdots : x_{n+1}] \,. \end{displaymath} Then the \emph{[[projective space]]} $k P^n$ is the corresponding [[quotient topological space]] \begin{displaymath} k P^n \;\coloneqq\; \left(k^{n+1} \setminus \{0\}\right) / \sim \,. \end{displaymath} \end{defn} \begin{defn} \label{TopologicalProjectiveSpaceStandardOpenCover}\hypertarget{TopologicalProjectiveSpaceStandardOpenCover}{} \textbf{(standard open cover of topological projective space)} For $n \in \mathbb{N}$ the \emph{standard open cover} of the projective space $k P^n$ (def. \ref{ToplogicalProjectiveSpace}) is \begin{displaymath} \left\{ U_i \subset k P^n \right\}_{i \in \{1, \cdots, n+1\}} \end{displaymath} with \begin{displaymath} U_i \coloneqq \left\{ [x_1 : \cdots : x_{n+1}] \in k P^n \;\vert\; x_i \neq 0 \right\} \,. \end{displaymath} To see that this is an open cover: \begin{enumerate}% \item This is a cover because with the orgin removed in $k^n \setminus \{0\}$ at every point $[x_1: \cdots : x_{n+1}]$ at least one of the $x_i$ has to be non-vanishing. \item These subsets are open in the [[quotient topology]] $k P^n = (k^n \setminus \{0\})/\sim$, since their [[pre-image]] under the quotient co-projection $k^{n+1} \setminus \{0\} \to k P^n$ coincides with the pre-image $(pr_i\circ\iota)^{-1}( k \setminus \{0\} )$ under the [[projection]] onto the $i$th coordinate in the [[product topological space]] $k^{n+1} = \underset{i \in \{1,\cdots, n\}}{\prod} k$ (where we write $k^n \setminus \{0\} \overset{\iota}{\hookrightarrow} k^n \overset{pr_i}{\to} k$). \end{enumerate} \end{defn} \begin{defn} \label{TautologicalTopologicalLineBundle}\hypertarget{TautologicalTopologicalLineBundle}{} \textbf{(tautological topological line bundle)} For $k$ a [[topological field]] and $n \in \mathbb{N}$, the \emph{tautological line bundle} over the [[projective space]] $k P^n$ is topological $k$-[[line bundle]] whose total space is the following [[subspace]] of the [[product space]] of the [[projective space]] $k P^n$ with $k^n$: \begin{displaymath} T \coloneqq \left\{ ( [x_1: \cdots : x_{n+1}], \vec v) \in k P^n \times k^{n+1} \;\vert\; \vec v \in \langle \vec x\rangle_k \right\} \,, \end{displaymath} where $\langle \vec x\rangle_k \subset k^{n+1}$ is the $k$-[[linear span]] of $\vec x$. (The space $T$ is the space of pairs consisting of the ``name'' of a $k$-line in $k^{n+1}$ together with an element of that $k$-line) This is a bundle over [[projective space]] by the projection function \begin{displaymath} \itexarray{ T &\overset{\pi}{\longrightarrow}& k P^n \\ ([x_1: \cdots : x_{n+1}], \vec v) &\mapsto& [x_1: \cdots : x_{n+1}] } \,. \end{displaymath} \end{defn} \begin{prop} \label{WellDefinedTautologicalTopologicalLineBundle}\hypertarget{WellDefinedTautologicalTopologicalLineBundle}{} \textbf{(tautological topological line bundle is well defined)} The tautological line bundle in def. \ref{TautologicalTopologicalLineBundle} is well defined in that it indeed admits a [[local trivialization]]. \end{prop} \begin{proof} We claim that there is a local trivialization over the canonical cover of def. \ref{TopologicalProjectiveSpaceStandardOpenCover}. This is given for $i \in \{1, \cdots, n\}$ by \begin{displaymath} \itexarray{ U_i \times k &\overset{}{\longrightarrow}& T\vert_{U_i} \\ ( [x_1 : \cdots x_{i-1}: 1 : x_{i+1} : \cdots : x_{n+1}] , c ) &\mapsto& ( [x_1 : \cdots x_{i-1} : 1 : x_{i+1} : \cdots : x_{n+1} ], (c x_1, c x_2, \cdots , c x_{n+1}) ) } \,. \end{displaymath} This is clearly a [[bijection]] of underlying sets. To see that this function and its inverse function are continuous, hence that this is a [[homeomorphism]] notice that this map is the [[extension]] to the [[quotient topological space]] of the analogous map \begin{displaymath} \itexarray{ ( (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}) , c) &\mapsto& ( (x_1, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n+1}) , (c x_1, \cdots c x_{i-1}, c, c x_{i+1}, \cdots, c x_{n+1}) ) } \,. \end{displaymath} This is a [[polynomial]] function on [[Euclidean space]] and since [[polynomials are continuous]], this is continuous. Similarly the [[inverse function]] lifts to a [[rational function]] on a subspace of Euclidean space, and since [[rational functions are continuous]] on their domain of definition, also this lift is continuous. Therefore by the [[universal property]] of the [[quotient topology]], also the original functions are continuous. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[basic complex line bundle on the 2-sphere]] is the tautological [[complex line bundle]] over the [[complex projective space]] $\mathbb{C}P^1 \simeq S^2$ (the [[Riemann sphere]]) \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Lecture notes include \begin{itemize}% \item [[Klaus Wirthmüller]], section 2 of \emph{Vector bundles and K-theory}, 2012 (\href{ftp://www.mathematik.uni-kl.de/pub/scripts/wirthm/Top/vbkt_skript.pdf}{pdf}) \end{itemize} See also \begin{itemize}% \item Wikipedia, \emph{\href{https://en.wikipedia.org/wiki/Tautological_bundle}{Tautological bundle}} \end{itemize} [[!redirects tautological line bundles]] \end{document}