\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tensor product} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{monoidal_categories}{}\paragraph*{{Monoidal categories}}\label{monoidal_categories} [[!include monoidal categories - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definitions}{Definitions}\dotfill \pageref*{definitions} \linebreak \noindent\hyperlink{in_a_multicategory}{In a multicategory}\dotfill \pageref*{in_a_multicategory} \linebreak \noindent\hyperlink{in_terms_of_heteromorphisms}{In terms of heteromorphisms}\dotfill \pageref*{in_terms_of_heteromorphisms} \linebreak \noindent\hyperlink{of_modules_in_a_monoidal_category}{Of modules in a monoidal category}\dotfill \pageref*{of_modules_in_a_monoidal_category} \linebreak \noindent\hyperlink{of_modules_in_a_bicategory}{Of modules in a bicategory}\dotfill \pageref*{of_modules_in_a_bicategory} \linebreak \noindent\hyperlink{in_a_virtual_double_category}{In a virtual double category}\dotfill \pageref*{in_a_virtual_double_category} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The term \textbf{tensor product} has many different but closely related meanings. \begin{itemize}% \item In its original sense a \emph{tensor product} is a representing object for a suitable sort of \emph{[[bilinear map]]} and \emph{[[multilinear map]]}. The most classical versions are for [[vector spaces]] ([[modules]] over a [[field]]), and more generally [[modules]] over a [[ring]]. In modern language this takes place in a [[multicategory]]. \item Consequently, the [[functor]] $\otimes : C \times C \to C$ which is part of the data of any [[monoidal category]] $C$ is also often called a \emph{tensor product}, since in many examples of monoidal categories it is induced from a tensor product in the above sense (and in fact, \emph{any} monoidal category underlies a multicategory in a canonical way). In parts of the literature (certain) [[abelian category|abelian]] monoidal categories are even addressed as \emph{tensor categories}. \item Given two objects in a [[monoidal category]] $(C,\otimes)$ with a right and left [[action]], respectively, of some [[monoid]] $A$, their \emph{tensor product over $A$} is the quotient of their tensor product in $C$ by this action. If $A$ is commutative, then this is a special case of the tensor product in a multicategory. \item This generalizes to modules over [[monad|monads]] in a bicategory, which includes the notion of \emph{tensor product of functors}. \item Finally, tensor products in a multicategory and tensor products over monads in a bicategory are both special cases of tensor products in an [[virtual double category]]. \end{itemize} \hypertarget{definitions}{}\subsection*{{Definitions}}\label{definitions} \hypertarget{in_a_multicategory}{}\subsubsection*{{In a multicategory}}\label{in_a_multicategory} \begin{defn} \label{}\hypertarget{}{} For $M$ a [[multicategory]] and $A$ and $B$ [[objects]] in $M$, the \textbf{tensor product} $A \otimes B$ is defined to be an object equipped with a [[universal construction|universal]] [[multimorphism]] $A,B\to A \otimes B$ in that any multimorphism $A,B\to C$ factors uniquely through $A,B\to A \otimes B$ via a (1-ary) morphism $A \otimes B\to C$. \end{defn} \begin{example} \label{}\hypertarget{}{} $M$ is the category [[Ab]] of abelian groups, made into a [[multicategory]] using [[multilinear maps]] as the multimorphisms, then we get the usual [[tensor product of abelian groups]]. That is, $A \otimes B$ is equipped with a universal map from $A \times B$ (as a set) to $C$ such that this map is linear (a group homomorphism) in each argument separately. This tensor product can also be constructed explicitly by \begin{enumerate}% \item starting with the cartesian product $A\times B$ in sets, \item generating a \emph{free} abelian group from it, and then \item quotienting by relations $(a_1,b)+(a_2,b)\sim (a_1+a_2,b)$ and $(a,b_1)+(a,b_2)\sim (a,b_1+b_2)$. (The 0-ary relations $(0,b)\sim 0$ and $(a,0)\sim 0$ follow automatically; you need them explicitly if you generalise to [[abelian monoid]]s.) \end{enumerate} \end{example} Note that in this case, $A\otimes B$ is not a [[subobject]] \emph{or} a [[quotient]] of the [[cartesian product]] $A\times B$. However, in many other cases the tensor product in a multicategory \emph{can} be obtained as a quotient of some other pre-existing product; see \emph{[[tensor product of modules]]} below. Other examples of tensor products in multicategories: \begin{example} \label{}\hypertarget{}{} The [[Gray tensor product]] of [[strict 2-category|strict 2-categories]] is a tensor product in the multicategory of 2-categories and [[cubical functor]]s. Likewise for Sjoerd Crans' tensor product of Gray-categories. \end{example} \begin{example} \label{}\hypertarget{}{} In particular, any [[closed category]] (even if not monoidal) has an underlying multicategory. Tensor products in this multicategory are characterized by the adjointness relation \begin{displaymath} \hom(A\otimes B, C) \cong \hom(A, \hom(B,C)). \end{displaymath} This may be the oldest notion of tensor product, since the definition of the internal-hom of abelian groups and vector spaces, unlike that of their tensor product, is intuitively obvious. \end{example} While the universal property referred to above (every bilinear map $A,B\to C$ factors uniquely through $A,B\to A\otimes B$ via a map $A\otimes B \to C$) suffices to define the tensor product, it does not suffice to prove that it is associative and unital. For this we need the stronger property that any multilinear map $D_1,\dots,D_m,A,B,E_1,\dots, E_n \to C$ factors uniquely through $A,B\to A\otimes B$ via a multilinear map $D_1,\dots,D_m, A\otimes B ,E_1,\dots, E_n \to C$. \hypertarget{in_terms_of_heteromorphisms}{}\subsubsection*{{In terms of heteromorphisms}}\label{in_terms_of_heteromorphisms} An alternative approach is to define the tensor product via an inter-categorical universal property involving [[heteromorphism|heteromorphisms]]. Tensor products do not always arise via an adjunction, but we can observe that $hom (a \otimes b, c) \simeq het (\langle a, b \rangle, c)$ in general. That is to say, any morphism from $a \otimes b$ to $c$ in some category $C$ corresponds to a heteromorphism from $\langle a, b \rangle$ in $C \times C$ to $c$ in $C$. In other words, the tensor product is a left representation of $het (\langle a, b \rangle, c)$. When tensor products exist, we have a canonical het $\eta_{\langle a, b \rangle} \colon \langle a, b \rangle \to a \otimes b$ from $id_{a \otimes b} \in hom (a \otimes b, a \otimes b)$. Given another het $\phi \colon \langle a, b \rangle \to c$, we get the following commutative diagram. \begin{displaymath} \begin{array}{cccC} & {\langle a, b \rangle} & & & \\ \eta_{\langle a, b \rangle} & \downarrow & \overset{\phi}\searrow & & \\ & a \otimes b & \underset{f}\dashrightarrow & c & \\ \end{array} \end{displaymath} This represents an example of a more general method for translating universal properties in multicategories into ones involving heteromorphisms. \hypertarget{of_modules_in_a_monoidal_category}{}\subsubsection*{{Of modules in a monoidal category}}\label{of_modules_in_a_monoidal_category} Let $R$ be a [[commutative ring]] and consider the multicategory $R$[[Mod]] of $R$-[[modules]] and $R$-[[multilinear maps]]. In this case the [[tensor product of modules]] $A\otimes_R B$ of $R$-modules $A$ and $B$ can be constructed as the [[quotient]] of the [[tensor product of abelian groups]] $A\otimes B$ underlying them by the [[action]] of $R$; that is, \begin{displaymath} A\otimes_R B = A\otimes B / (a,r\cdot b) \sim (a\cdot r,b). \end{displaymath} More category-theoretically, this can be constructed as the [[coequalizer]] of the two maps \begin{displaymath} A\otimes R \otimes B \;\rightrightarrows\; A\otimes B \end{displaymath} given by the action of $R$ on $A$ and on $B$. If $R$ is a [[field]], then $R$-modules are vector spaces; this gives probably the most familiar case of a tensor product spaces, which is also probably the situation where the concept was first conceived. This tensor product can be generalized to the case when $R$ is not commutative, as long as $A$ is a right $R$-module and $B$ is a left $R$-module. More generally yet, if $R$ is a [[monoid]] in any [[monoidal category]] (a ring being a monoid in [[Ab]] with its tensor product), we can define the tensor product of a left and a right $R$-module in an analogous way. If $R$ is a commutative monoid in a [[symmetric monoidal category]], so that left and right $R$-modules coincide, then $A\otimes_R B$ is again an $R$-module, while if $R$ is not commutative then $A\otimes_R B$ will no longer be an $R$-module of any sort. \begin{itemize}% \item Not all tensor products in multicategories are instances of this construction. In particular, the tensor product in [[Ab]] is not the tensor product of modules over any monoid in the cartesian monoidal category [[Set]]. Abelian groups \emph{can} be considered as ``sets with an action by something,'' but that something is more complicated than a monoid: it is a special sort of [[monad]] called a [[commutative theory]]. \item Conversely, if $R$ is a \emph{commutative} monoid in a symmetric monoidal category, there is a multicategory of $R$-modules whose tensor product agrees with the coequalizer defined above, but if $R$ is not commutative this is impossible. However, see the section on tensor products in virtual double categories, below. \end{itemize} \hypertarget{of_modules_in_a_bicategory}{}\subsubsection*{{Of modules in a bicategory}}\label{of_modules_in_a_bicategory} The tensor product of left and right modules over a noncommutative monoid in a monoidal category is a special case of the tensor product of modules for a [[monad]] in a [[bicategory]]. If $R: x\to x$ is a monad in a bicategory $B$, a right $R$-module is a 1-cell $A: y\to x$ with an action by $R$, a left $R$-module is a 1-cell $B: x\to z$ with an action by $R$, and their tensor product, if it exists, is a 1-cell $y\to z$ given by a similar coequalizer. Regarding a monoidal category as a 1-object bicategory, this recovers the above definition. For example, consider the bicategory $V-Mat$ of $V$-valued [[matrix|matrices]] for some monoidal category $V$. A monad in $V-Mat$ is a $V$-[[enriched category]] $A$, an $(A,I)$-bimodule is a functor $A\to V$, an $(I,A)$-bimodule is a functor $A^{op}\to V$, and their tensor product in $V-Mat$ is a classical construction called the \textbf{tensor product of functors}. It can also be defined as a [[end|coend]]. \hypertarget{in_a_virtual_double_category}{}\subsubsection*{{In a virtual double category}}\label{in_a_virtual_double_category} A [[virtual double category]] is a common generalization of a multicategory and a bicategory (and actually of a [[double category]]). Among other things, it has objects, 1-cells, and ``multi-2-cells.'' We leave it to the reader to define a notion of tensor product of 1-cells in such a context, analogous to the tensor product of objects in a multicategory. A multicategory can be regarded as a 1-object virtual double category, so this generalizes the notion of tensor product in a multicategory. On the other hand, in any bicategory (in fact, any double category) there is a virtual double category whose objects are monads and whose 1-cells are bimodules, and the tensor product in this virtual double category is the tensor product of modules in a bicategory defined above. Thus, tensor products in a virtual double category include all notions of tensor product discussed above. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[tensor product of abelian groups]] \item [[tensor product of modules]] \item [[tensor product of vector spaces]] \begin{itemize}% \item [[inductive tensor product]] \end{itemize} \item [[tensor product of representations]] \item [[tensor product of vector bundles]] \item [[tensor product of algebras]] \item [[tensor product of chain complexes]] \item [[tensor product of Banach spaces]] \item [[tensor product of functors]] \item [[Deligne tensor product of abelian categories]] \item [[tensor product of presentable (infinity,1)-categories]] \item in terms of [[linear type theory]] the tensor product is the [[categorical semantics]] of the [[multiplicative conjunction]]. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[tensor calculus]] \item [[cartesian product]] \item [[external tensor product]] \item [[internal hom]] \item [[composite system]] \item [[cotensor product]] \end{itemize} [[!include homotopy-homology-cohomology]] \hypertarget{references}{}\subsection*{{References}}\label{references} Exposition of the tensor product of $R$-[[modules]] is for instance in \begin{itemize}% \item Keith Conrad, \emph{Tensor products} (\href{http://www.math.uconn.edu/~kconrad/blurbs/linmultialg/tensorprod.pdf}{pdf}) \end{itemize} A characterization for tensor products of $R$-modules in terms of heteromorphisms appears in section 9 of. \begin{itemize}% \item David Ellerman, \emph{Mac Lane, Bourbaki, and Adjoints: A Heteromorphic Retrospective} (\href{http://www.ellerman.org/wp-content/uploads/2015/06/Maclane-Bourbaki-Redux.pdf}{pdf}) \end{itemize} [[!redirects tensor products]] \end{document}