\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tensor product of infinity-modules} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} The generalization of the notion of [[tensor product of modules]] to [[∞-modules]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} We start by defining a collection of [[colored operad|colored]] [[symmetric operad]] $Tens^\otimes$ parameterized by the [[simplex category]] $\Delta$ such that for each $k$-[[simplex]] $[k] \in Delta$ the [[algebras over an operad]] over $Tens^\otimes_{[k]}$ are $(n+1)$-tuples of [[associative algebras]] $(A_i)$ together with a consecutive sequence of [[bimodules]] over these (the right algebra of every bimodule being the left algebra of the next one). The definition is a straightforward generalization of the of the [[operad for modules]] and the [[operad for bimodules]]. \begin{defn} \label{}\hypertarget{}{} Write $Tens^\otimes$ for the category (to be thought of as a family of [[categories of operators]] of [[symmetric operads]]) whose \begin{itemize}% \item [[objects]] are triples consisting of \begin{itemize}% \item an object $\langle n\rangle \in Assoc^\otimes$ of the [[category of operators]] of the [[associative operad]]; \item an object $[k] \in \Delta$ of the [[simplex category]]; \item two [[functions]] $c_-, c_+ \colon \langle n\rangle^\circ \to [k]$ such that for all $i in \langle n\rangle^\circ$ either $c_+(i) = c_-(i)$ or $c_+(i) = c_-(i) + 1$; \end{itemize} \item [[morphisms]] consist if \begin{itemize}% \item a morphism $\alpha \colon \langle n\rangle \to \langle n'\rangle$ in $Assoc^\otimes$ \item a morphism $\lambda \colon [k'] \to [k]$ in $\Delta$ \end{itemize} such that (\ldots{}) \end{itemize} \end{defn} (\hyperlink{Lurie}{Lurie, def. 4.3.4.1}) We disuss how an object of this category is to be thought of as labeled with ``algebra labels $\mathfrak{a}_i$'' for vertices of a simplex, an ``bimodule lables $\mathfrak{n}_{i, j}$'' for edges of the simplex. \begin{remark} \label{}\hypertarget{}{} By construction there are [[forgetful functors]] \begin{displaymath} \Delta^{op} \leftarrow Tens^\otimes \rightarrow \mathcal{Ass}^\otimes \,. \end{displaymath} \end{remark} (\hyperlink{Lurie}{Lurie, 4.3.4.1}) \begin{defn} \label{NotationForTensS}\hypertarget{NotationForTensS}{} For $S \to \Delta^{op}$ an [[(∞,1)-functor]] (given as a map of simplicial sets from a [[quasi-category]] $S$ to the [[nerve]] of the [[simplex category]]), write \begin{displaymath} Tens^\otimes_{S} \coloneqq Tens^\otimes \underset{\Delta^{op}}{\times} S \end{displaymath} for the [[fiber product]] in [[sSet]]. \end{defn} (\hyperlink{Lurie}{Lurie, notation 4.3.4.5, 4.3.4.15}) \begin{prop} \label{SegalConditionOfTens}\hypertarget{SegalConditionOfTens}{} We have \begin{itemize}% \item $Tens^\otimes_{[0]} \simeq Assoc^\otimes$, the [[associative operad]]; \item $Tens^\otimes_{[1]} \simeq BM^\otimes$ the [[operad for bimodules]]. \item $Tens^\otimes_{[k]} \simeq Tens^\otimes_{\{0,1\}} \underset{Tens^\otimes_{\{1\}}}{\coprod} Tens^\otimes_{\{1,2\}} \underset{Tens^\otimes_{\{2\}}}{\coprod} \cdots \underset{Tens^\otimes_{\{k-1\}}}{\coprod} Tens^\otimes_{\{k-1,k\}}$ as an [[(∞,1)-colimit]] in the [[(∞,1)-category]] of [[(∞,1)-operads]] (a dual \emph{[[Segal condition]]}) \end{itemize} \end{prop} (\hyperlink{Lurie}{Lurie, example 4.3.4.6, 4.3.4.7, prop. 4.3.4.11}) \begin{remark} \label{}\hypertarget{}{} Prop. \ref{SegalConditionOfTens} implies that for $\mathcal{C}^\otimes$ an [[(∞,1)-operad]], the [[(∞,1)-algebras over an (∞,1)-operad]] over the fiber $Tens^\otimes_{[k]}$ in $\mathcal{C}$ form the [[(∞,1)-category]] \begin{displaymath} Alg_{Tens^\otimes_{[k]}}(\mathcal{C}) \simeq \underbrace{ BMod(\mathcal{C}) \underset{Alg(\mathcal{C})}{\times} BMod(\mathcal{C}) \underset{Alg(\mathcal{C})}{\times} \cdots \underset{Alg(\mathcal{C})}{\times} BMod(\mathcal{C}) }_{k\;factors} \,. \end{displaymath} \end{remark} (\hyperlink{Lurie}{Lurie, 4.3.5}) \begin{defn} \label{NotationForAlS}\hypertarget{NotationForAlS}{} For $\mathcal{C}^\otimes \to Tens^\otimes_S$ a [[fibration]] in the [[model structure for quasi-categories]] which exhibits $\mathcal{C}^\otimes$ as an $S$-[[family of (∞,1)-operads]], write \begin{displaymath} Alg_S(\mathcal{C}) \hookrightarrow Fun_{Tens^\otimes_S}(Step_S, \mathcal{C}^\otimes) \end{displaymath} for the full [[sub-(∞,1)-category]] on those [[(∞,1)-functors]] which send inert morphisms to inert morphisms. \end{defn} (\hyperlink{Lurie}{Lurie, notation 4.3.4.15}) \begin{prop} \label{}\hypertarget{}{} For an [[(∞,1)-functor]] $S \to \Delta^{op}$ and a [[fibration]] in the [[model structure for quasicategories]] $q \colon \mathcal{C}^\otimes \to Tens_S^\otimes$ exhibiting $\mathcal{C}^\otimes$ as an $S$-[[family of (∞,1)-operads]], then there is an [[equivalence of (∞,1)-categories]] \begin{displaymath} Alg_{/Tens_S}(\mathcal{C}) \to Alg_S(\mathcal{C}) \,. \end{displaymath} \end{prop} (\hyperlink{Lurie}{Lurie, prop. 4.3.4.17}). \begin{defn} \label{NotationForTensGt}\hypertarget{NotationForTensGt}{} Let $\Delta^1 \to \Delta^{op}$ be the map that picks the morphism $\{0,2\} \hookrightarrow \Delta^2$ in the [[simplex category]]. With def. \ref{NotationForTensS} write \begin{displaymath} Tens^\otimes_{\gt} \coloneqq Tens_{\Delta^1}^\otimes \coloneqq Tens^\otimes \underset{\Delta^{op}}{\times} \Delta^1 \,. \end{displaymath} \end{defn} (\hyperlink{Lurie}{Lurie, notation 4.3.5.1}) \begin{remark} \label{BilinearInfinityMap}\hypertarget{BilinearInfinityMap}{} The $Tens^\otimes_{\gt}$ of def. \ref{NotationForTensGt} is a [[correspondence]] of [[(∞,1)-operads]] which exhibits bilinear maps as follows: An [[∞-algebra over an (∞,1)-operad]] $\gamma_1 \colon Tens^\otimes_{\gt} \times_{\Delta^1} \{1\} \to \mathcal{C}^\otimes$ is equivalently a bimodule \begin{displaymath} X \in {}_{A'} Mod(\mathcal{C})_{C'} \,, \end{displaymath} while an $\infty$-algebra $\gamma_0 \colon Tens^\otimes_{\gt} \times_{\Delta^1} \{0\} \to \mathcal{C}^\otimes$ is equivalently a pair of bimodules \begin{displaymath} N_1 \in {}_A Mod(\mathcal{C})_B \;\;, \;\; N_2 \in {}_B Mod(\mathcal{C})_C \,. \end{displaymath} An extension of $(\gamma_0, \gamma_1)$ through the correspondence hence to a map of [[generalized (∞,1)-operads]] $Tens^\otimes_{\gt} \to \mathcal{C}^\otimes$ is equivalently a pair of [[A-∞ algebra]] maps $A \to A'$ and $B \to B'$ together with a bilinear map $N_1 \otimes N_2 \to X$. \end{remark} (Lurie, beginning of 4.3.4). \begin{defn} \label{RelativeTensorProduct}\hypertarget{RelativeTensorProduct}{} (\textbf{relative tensor product of $\infty$-bimodules}) For $q \colon \mathcal{C}^\otimes \to \mathcal{O}^\otimes$ a [[fibration of (∞,1)-operads]], consider a morphism of [[generalized (∞,1)-operads]] \begin{displaymath} F \colon Tens_{\gt}^\otimes \to \mathcal{C}^{\otimes} \,. \end{displaymath} This exhibits three [[A-∞ algebras]] $A_i \coloneqq F|_{\{i\}}$, a pair of bimodule objects \begin{displaymath} (N_1, N_2) = F|_{[2]} \end{displaymath} over $A_0$-$A_1$ and over $A_1$-$A_2$, respectively, and a bimodule object $N = F|_{[1]}$ over $A_0$-$A_2$. We say that $N$ exhibits the \textbf{relative [[tensor product of ∞-modules]]} of $N_1$ with $N_2$ over $A_1$ \begin{displaymath} N \simeq N_1 \otimes_{A_1} N_2 \end{displaymath} if $F$ is an operadic $q$-[[(∞,1)-colimit]]-[[diagram]]. \end{defn} (\hyperlink{Lurie}{Lurie, def. 4.3.5.3}). \begin{remark} \label{TensorProductFunctor}\hypertarget{TensorProductFunctor}{} Let $\mathcal{C}^\otimes \to Assoc^\otimes$ exhibit a [[monoidal (∞,1)-category]] such that $\mathcal{C}$ has [[geometric realization]] of [[simplicial objects in an (∞,1)-category|simplicial objects]] and the tensor product preserves these separately in each argument. Then the tensor product of $\infty$-modules def. \ref{RelativeTensorProduct} extends to an [[(∞,1)-functor]] \begin{displaymath} BMod(\mathcal{C}) \underset{Alg(\mathcal{C})}{\times} BMod(\mathcal{C}) \to BMod(\mathcal{C}) \,. \end{displaymath} \end{remark} (\hyperlink{Lurie}{Lurie, example 4.3.5.11}) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[(∞,1)-bimodules]], [[(∞,2)-category of (∞,1)-bimodules]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Section 4.3.5 of \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Algebra]]} \end{itemize} [[!redirects tensor product of ∞-modules]] [[!redirects tensor product of (∞,1)-modules]] [[!redirects tensor product of (infinity,1)-modules]] \end{document}