\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tensorial strength} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{enriched_category_theory}{}\paragraph*{{Enriched category theory}}\label{enriched_category_theory} [[!include enriched category theory contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{description}{Description}\dotfill \pageref*{description} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the simplest case, the notion of \emph{tensorial strength} is a way to talk about when an [[endofunctor]] $T : V \to V$ of a [[closed monoidal category]] is a $V$-[[enriched functor]] when $V$ is regarded as being a $V$-[[enriched category]]. But in fact the concept makes sense even when $V$ is not closed. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given a monoidal category $V$, a \textbf{tensorial strength} for a functor \begin{displaymath} F : V \to V \end{displaymath} is usually defined as a natural transformation \begin{displaymath} \beta_{v, w}: v \otimes F(w) \to F(v \otimes w) \end{displaymath} making two diagrams commute: \begin{displaymath} \itexarray{ (u \otimes v) \otimes F(w) & & \overset{\beta_{u\otimes v,w}}{\to} & & F((u\otimes v)\otimes w)\\ ^\mathllap{\alpha_{u,v,F(w)}}\downarrow & & & & \downarrow^{\mathrlap{F(\alpha_{u,v,w})}}\\ u\otimes (v\otimes F(w)) & \underset{1_u\otimes\beta_{v,w}}{\to} & u\otimes F(v\otimes w) & \underset{\beta_{u,v\otimes w}}{\to} & F(u\otimes v\otimes w) } \end{displaymath} and \begin{displaymath} \itexarray{ I\otimes F(v) & \overset{\beta_{I,v}}{\to} & F(I\otimes v) \\ & _\mathllap{\lambda_{F(v)}}\searrow & \downarrow^\mathrlap{F(\lambda_v)}\\ & & F(v) } \end{displaymath} where $\alpha$ is the [[associator]] and $\lambda$ is the [[unitor]]. A functor equipped with a tensorial strength is called a \textbf{strong functor} (not to be confused with a \emph{strong 2-functor}, which is another name for a [[pseudofunctor]], i.e. a [[lax 2-functor]] whose coherence cells are invertible). More generally, the notion makes sense not just for endofunctors of $V$, but for functors between any categories that are ``tensored over $V$.'' \emph{Tentative} -- The following reformulation of the standard definition is tentative. See the discussion referenced below It seems we may phrase this definition more conceptually as follows. There is a bicategory $V-Act$ where: \begin{itemize}% \item the objects are categories $C$ equipped with a lax left $V$-action, i.e. a [[lax monoidal functor]] $\alpha : V \to End(C)$, \item the morphisms are functors laxly preserving this action, and \item the 2-morphisms are natural transformations compatible with this action. \end{itemize} $V$ has a canonical left action on itself, which allows us to think of it as an object of $V-Act$. So, given a functor $F: V \to V$, a \textbf{tensorial strength} for $F$ is defined to be a way of equipping it with the structure of a morphism in $V-Act$. A bit more precisely: \begin{displaymath} V-Act = Lax(B V, Cat) \end{displaymath} Here $B V$ is $V$ regarded as a 1-object weak 2-category, $Cat$ is regarded as a 2-category, and $Lax$ is the bicategory of \begin{itemize}% \item weak 2-categories \item [[lax functor|lax functors]] \item [[lax natural transformation|lax natural transformations]] \end{itemize} There is a forgetful 2-functor \begin{displaymath} V-Act \to Cat \end{displaymath} and a \textbf{tensorial strength} for a functor $F: V \to V$ is a way of lifting it to a morphism $\tilde{F}: \tilde{V} \to \tilde{V}$ in $V-Act$, where $\tilde{V}$ is $V$ equipped with its canonical left action on itself. \hypertarget{description}{}\subsection*{{Description}}\label{description} The first thing to notice about (covariant) \textbf{tensorial strengths} is that they attach to a [[functor]] from a [[monoidal category]] to itself, say $T: V \to V$. (The concept doesn't make much immediate sense if $T$ is a functor between different monoidal categories.) One possible reason why it may be hard to grasp the notion of strength is because in the case $V = Set$, they're sort of invisible. Every functor $T: Set \to Set$ has one, in fact a canonical one! This will make more sense in a moment. Strengths are easier to understand by considering the case where $V$ is [[closed monoidal category|closed monoidal]]. Here $V$ is [[enriched category|enriched]] in itself, and one of the most important aspects of strengths is this: \begin{itemize}% \item A functor $T: V \to V$ with a strength is the same thing as a $V$-enrichment on $T$. \end{itemize} Here's how that works. An enrichment on $T$ in $V$-[[enriched category theory]] consists of a natural family of morphisms in $V$, \begin{displaymath} hom(a, b) \to hom(T(a), T(b)), \end{displaymath} satisfying some suitable axioms. Here $hom$ denotes the enrichment of $V$ in itself -- the [[internal hom]]. Starting from a strength on $T$, you can cook up an enrichment on $T$, roughly as follows: the map above is equivalent by hom-tensor [[adjunction]] to a map \begin{displaymath} hom(a, b) \otimes T(a) \to T(b) \end{displaymath} and now the strength allows you to slide $hom(a, b)$ inside $T$, and from there you just apply $T$ to the evaluation: \begin{displaymath} T(hom(a, b) \otimes a) \overset{T(eval_{a, b})}{\to} T(b) \end{displaymath} and presto, you're done. The strength axioms ensure that this enrichment structure on $T$ satisfies the axioms you need for a functor to be enriched. (And going back the other way, from an enrichment to a strength, is also easy -- there you have to dualize. That is, instead of using the evaluation which is the counit of the hom-tensor adjunction, you use the coevaluation which is the unit. ) After some work, one can convince oneself that the notions of strength and enrichment for endofunctors on closed monoidal categories really are equivalent notions. And now we can understand why strengths in the case $V = Set$ are so ``invisible'' -- every functor $T: Set \to Set$ is $Set$-enriched; that's what we mean by an ordinary functor! There's rather a lot more one could say about strengths, and I may come back to more of that later, but I would like to say that strengths are kind of a trade secret. The first mathematician I know of who intuitively grasped strength was C.S. Peirce! And particularly in his Alpha graphs, the notion of strength plays an important role. The insight here can be related back to the enrichment = strength phenomenon. Suppose for instance we're in the theory of [[Boolean algebra]]s -- say we're studying the structure of a free Boolean algebra on a set of generators, $B[X]$. Then again we can think of this, or of any [[Heyting algebra]], as enriched in itself. Further, we have definable unary operators \begin{displaymath} T: B[X] \to B[X] \end{displaymath} in the theory, such as $T = p \wedge (-)$, or $T = p \Rightarrow (-)$, etc. The great discovery of Peirce is that any definable unary operator in the theory of Boolean algebras carries a strength, or if you prefer is enriched. That may be taken to be the essence of Peirce's iteration rule for Alpha, and it [[vertical categorification|categorifies]] right over to a similar statement for the theory of [[closed monoidal category|closed categories]], [[star-autonomous category|star-autonomous categories]], what have you: all definable unary covariant functors in such theories carry canonical strengths. (Peirce went a little further, and incorporated notions of contravariant strength as well.) \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cartesian closed functor]] \item [[strong monad]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The tentative `more conceptual' definition of tensorial strength, as well as the `description' above, arose in this discusssion: \begin{itemize}% \item [[John Baez]], \emph{The Monads Hurt My Head -- But Not Anymore} (\href{http://golem.ph.utexas.edu/category/2009/07/the_monads_hurt_my_head_but_no.html#c025476}{blog}) \end{itemize} The concept of tensorial strength is a prerequisite for the concept of [[strong monad]], so see the further discussion there. An original reference is \begin{itemize}% \item [[Anders Kock]], \emph{Strong functors and monoidal monads}, Arch. Math. (Basel) 23 (1972), 113--120. \end{itemize} [[!redirects tensorial strengths]] [[!redirects strong functor]] [[!redirects strong functors]] \end{document}