\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ternary factorization system} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{factorization_systems}{}\paragraph*{{Factorization systems}}\label{factorization_systems} [[!include factorization systems - contents]] \hypertarget{ternary_factorisation_systems}{}\section*{{Ternary factorisation systems}}\label{ternary_factorisation_systems} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{the_sixth_class_of_maps}{The sixth class of maps}\dotfill \pageref*{the_sixth_class_of_maps} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Just as an (orthogonal/unique) [[orthogonal factorization system|factorization system]] $(E,M)$ on a [[category]] $C$ gives a way to factor every [[morphism]] of $C$ as an $E$-map followed by an $M$-map, a \emph{ternary (orthogonal) factorization system} $(E,F,M)$ gives a way to factor every map of $C$ as an $E$-map followed by an $F$-map followed by an $M$-map. This is a special case of a notion of [[k-ary factorization system]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} It turns out that a convenient way to state the definition is in terms of a pair of ordinary (orthogonal) factorization systems. We define a \textbf{ternary factorization system} on $C$ to consist of a pair $(L_1,R_1)$ and $(L_2,R_2)$ of ordinary orthogonal factorization systems such that $L_1 \subseteq L_2$ (or equivalently $R_2 \subseteq R_1$). The three classes of map $(E,F,M)$ are then defined by $E=L_1$, $F = L_2\cap R_1$, and $M=R_2$. This is justified by: \begin{uprop} Given a ternary factorization system as above, any morphism $f:A\to B$ factors as \begin{displaymath} A \overset{L_1}{\to} im_2(f) \overset{L_2 \cap R_1}{\to} im_1(f) \overset{R_2}{\to} B \end{displaymath} in an essentially unique way. \end{uprop} \begin{proof} Consider the two ternary factorizations of $f$ obtained by \begin{enumerate}% \item First factoring $f$ into an $L_1$-map followed by an $R_1$-map, then factoring the $R_1$-part into an $L_2$-map followed by an $R_2$-map; and \item First factoring $f$ into an $L_2$-map followed by an $R_2$-map, then factoring the $L_2$-part into an $L_1$-map followed by an $R_1$-map. \end{enumerate} Note that both start with an $L_1$ map and end with an $R_2$ map. By a straightforward exercise in orthogonality, we can get comparison maps in both directions between these two factorizations which make them isomorphic. Therefore, since the first produces a middle map which is in $L_2$ and the second produces a middle map which is in $R_1$, this middle map must in fact be in $L_2\cap R_1$. Finally, any other such ternary factorization of $f$ induces an $(L_1,R_1)$ and $(L_2,R_2)$ factorization by composing pairwise, and uniqueness of these two implies uniqueness of the ternary factorization. More explicitly, we factor $f$ as $\backslash$begin\{center\}$\backslash$begin\{tikzcd\} \& C\_1 $\backslash$arr,``\{$\backslash$lambda\_2\}'' $\backslash$ardrr,``\{r\_1\}''' \& C\_2 $\backslash$ardr,``\{$\backslash$rho\_2\}'' $\backslash$ A $\backslash$arur,``\{$\backslash$ell\_1\}'' $\backslash$ardr,``\{$\backslash$lambda\_1\}''' $\backslash$ardrr,``\{$\backslash$ell\_2\}'' \&\&\& B$\backslash$ \& D\_1 $\backslash$arr,``\{$\backslash$rho\_1\}''' \& D\_2 $\backslash$arur,``\{r\_2\}''' $\backslash$end\{tikzcd\}$\backslash$end\{center\} with $\lambda_i, \ell_i\in L_i, \rho_j,r_j\in R_j$. Then since $R_2\subseteq R_1$, we have $r_2 \rho_1 \in R_1$, so that $(\ell_1,r_1)$ and $(\lambda_1,r_2\rho_1)$ are both $(L_1,R_1)$-factorizations of $f$ and thus we have a unique compatible isomorphism $C_1\cong D_1$. Similarly, $(\lambda_2 \ell_1, \rho_2)$ and $(\ell_2,r_2)$ are both $(L_2,R_2)$-factorizations, so we have a unique compatible isomorphism $C_2\cong D_2$. This gives a diagram $\backslash$begin\{center\}$\backslash$begin\{tikzcd\} \& C\_1 $\backslash$arr,``\{$\backslash$lambda\_2\}'' $\backslash$ardd,``$\backslash$cong'' \& C\_2 $\backslash$ardr,``\{$\backslash$rho\_2\}'' $\backslash$ardd,``$\backslash$cong''' $\backslash$ A $\backslash$arur,``\{$\backslash$ell\_1\}'' $\backslash$ardr,``\{$\backslash$lambda\_1\}''' \&\&\& B$\backslash$ \& D\_1 $\backslash$arr,``\{$\backslash$rho\_1\}''' \& D\_2 $\backslash$arur,``\{r\_2\}''' $\backslash$end\{tikzcd\}$\backslash$end\{center\} with two commutative triangles, and the middle square also commutes since both sides are lifts in a lifting problem of $\ell_1$ against $r_2$. Finally, since $\lambda_2\in L_2$ is isomorphic to $\rho_1\in R_1$ in the arrow category, both are in fact in $L_2\cap R_1$. \end{proof} Conversely, just as for a binary factorization system, the extra requirement of orthogonality can be deduced from uniqueness of the factorizations, a unique and \emph{functorial} ternary factorization implies that it ``splits'' into a pair of binary factorization systems, i.e. a ternary factorization system as defined here. This is remarked on \href{http://golem.ph.utexas.edu/category/2010/07/ternary_factorization_systems.html#c034162}{here}. One can also characterize the notion in terms of a ternary factorization with a ``ternary orthogonality'' property; see the paper of Pultr and Tholen referenced below. \hypertarget{the_sixth_class_of_maps}{}\subsection*{{The sixth class of maps}}\label{the_sixth_class_of_maps} In addition to $L_1$, $R_1$, $L_2$, $R_2$, and $L_2\cap R_1$, a ternary factorization system also determines a sixth important class of morphisms, namely those whose $(L_2\cap R_1)$-part is an isomorphism, or equivalently those that can be factored as an $L_1$-map followed by an $R_2$-map. We therefore call this class $R_2 L_1$. \begin{uprop} In a ternary factorization system, $L_1 = L_2 \cap R_2L_1$ and $R_2 = R_1 \cap R_2L_1$. \end{uprop} \begin{proof} In both cases $\subseteq$ is obvious. Conversely, if $f \in L_2 \cap R_2 L_1$, say $f = m e$ for $m\in R_2$ and $e\in L_1$, then orthogonality in the square \begin{displaymath} \itexarray{a & \overset{e}{\to} & c\\ ^f \downarrow && \downarrow ^m\\ b & \underset{id}{\to} & b} \end{displaymath} exhibits $f$ as a retract of $e$ in $Arr(C)$, whence $f\in L_1$ since $L_1$ is closed under retracts. \end{proof} \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item In [[Top]], let $L_1=$ quotient maps, $R_1=$ injective continuous maps, $L_2=$ surjective continuous functions, and $R_2=$ subspace embeddings. Here $L_2\cap R_1=$ bijective continuous maps, and the two intermediate objects in the ternary factorization of a continuous map are obtained by imposing the coarsest and the finest compatible topologies on its set-theoretic image. \item More generally, if a category has both ([[epimorphism|epi]], [[strong monomorphism|strong mono]]) and ([[strong epimorphism|strong epi]], [[monomorphism|mono]]) factorizations, then since strong epis are epi, we have a ternary factorization. Here $L_2\cap R_1$ is the class of monic epics, sometimes called [[bimorphisms]]. The maps in $R_2 L_1$ are sometimes called [[strict morphisms]]. \item On [[Cat]] there is a 2-categorical version of a ternary factorization system, determined by the [[factorization system on a 2-category|2-categorical factorization systems]] ([[essentially surjective functor|eso]]+[[full functor|full]], [[faithful functor|faithful]]) and (eso, [[fully faithful functor|full and faithful]]). Here $L_2\cap R_1$ is the class of eso+faithful functors, while $R_2 L_1$ is the class of full functors. This factorization system plays an important role in the study of [[stuff, structure, property]]. Restricted to [[groupoids]] this is the [[1-image]]-[[2-image]] factorization, the 3-stage [[Postnikov system]] of groupoids. \item On [[Topos]] there is also a 2-categorical ternary factorization system composed of the binary 2-categorical factorization systems ([[hyperconnected geometric morphism|hyperconnected]], [[localic geometric morphism|localic]]) and ([[geometric surjection|surjection]], [[geometric embedding|inclusion]]). Here the maps in $L_2\cap R_1$ have no name other than ``localic surjections,'' and those in $R_2 L_1$ have no established name (although they are briefly mentioned in A4.6.10 of the [[Elephant]]). \item Suppose that $C$ has a binary factorization system $(E,M)$ and that $p\colon A\to C$ is an [[ambifibration]] relative to $(E,M)$: i.e. every arrow in $E$ has an opcartesian lift and every arrow in $M$ has a [[cartesian morphism|cartesian]] lift. (In particular, $p$ could be a [[bifibration]].) Then there is a ternary factorization system on $A$ for which $L_1$ is the class of opcartesian arrows over $E$, $R_2$ is the class of cartesian arrows over $M$, and $L_2\cap R_1$ is the class of vertical arrows (those lying over identities). See \href{http://golem.ph.utexas.edu/category/2010/07/ternary_factorization_systems.html#c034162}{this comment}. For instance, the above factorization system on $Top$ is induced in this way via the [[forgetful functor]] $Top\to Set$ from the (epi,mono) factorization system on [[Set]]. \item A similar example is given by a [[span]] $A \overset{p}{\leftarrow} E \overset{q}{\to} B$ of categories where $p$ is a [[fibration]] whose cartesian morphisms are $q$-vertical and $q$ is an [[opfibration]] whose opcartesian morphisms are $p$-vertical (that is, the span $(p,q)$ is both a left and a right fibration in the sense of Street). Then the two factorization systems on $E$ given by the $q$-opcartesian and $q$-vertical morphisms on the one hand, and the $p$-vertical and $p$-cartesian morphisms on the other, satisfy the $L_1 \subseteq L_2$ condition above, so that every morphism in $E$ factors as a $q$-opcartesian morphism followed by a morphism that is both $p$- and $q$-vertical, followed by a $p$-cartesian morphism. Such a span is a [[two-sided fibration]] if $L_1R_2 \subseteq R_2L_1$, that is if the three-way factorization of the composite of a $p$-cartesian morphism followed by a $q$-opcartesian one has its middle term an isomorphism. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item The notion of [[model category]] involves a pair of [[weak factorization systems]] called (acyclic cofibration, fibration) and (cofibration, acyclic fibration) which are compatible in the same sense as above. However, non-uniqueness of these factorizations means that the resulting ``ternary factorization'' of a morphism is not unique. The class corresponding to $R_2 L_1$ is important, however: it is precisely the class of [[weak equivalences]]. \item The notion of [[k-ary factorization system]] is a generalization to factorizations into $k$ morphisms. \item Just as [[strict factorization system]]s can be identified with [[distributive laws]] in the [[bicategory]] of [[spans]], so ``strict'' ternary (and k-ary) factorization systems can be identified with \href{http://arxiv.org/abs/0710.1120}{iterated distributive law}s in $Span$. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item A. Pultr and W. Tholen, \emph{Free Quillen Factorization Systems}. Georgian Math. J.9 (2002), No. 4, 807-820 \item \href{http://golem.ph.utexas.edu/category/2010/07/ternary_factorization_systems.html}{Cafe discussion} \end{itemize} [[!redirects ternary factorization system]] [[!redirects ternary factorization systems]] [[!redirects ternary factorisation system]] [[!redirects ternary factorisation systems]] [[!redirects double factorization system]] [[!redirects double factorization systems]] [[!redirects double factorisation system]] [[!redirects double factorisation systems]] [[!redirects 3-way factorization system]] [[!redirects 3-way factorization systems]] [[!redirects 3-way factorisation system]] [[!redirects 3-way factorisation systems]] [[!redirects 3-step factorization system]] [[!redirects 3-step factorization systems]] [[!redirects 3-step factorisation system]] [[!redirects 3-step factorisation systems]] [[!redirects 3-stage factorization system]] [[!redirects 3-stage factorization systems]] [[!redirects 3-stage factorisation system]] [[!redirects 3-stage factorisation systems]] [[!redirects 3-fold factorization system]] [[!redirects 3-fold factorization systems]] [[!redirects 3-fold factorisation system]] [[!redirects 3-fold factorisation systems]] [[!redirects Quillen factorization system]] [[!redirects Quillen factorization systems]] [[!redirects Quillen factorisation system]] [[!redirects Quillen factorisation systems]] \end{document}