\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{ternary frame} \hypertarget{ternary_frames}{}\section*{{Ternary frames}}\label{ternary_frames} \noindent\hyperlink{warning}{Warning}\dotfill \pageref*{warning} \linebreak \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{modeling_substructural_logic}{Modeling substructural logic}\dotfill \pageref*{modeling_substructural_logic} \linebreak \noindent\hyperlink{additional_structure}{Additional structure}\dotfill \pageref*{additional_structure} \linebreak \noindent\hyperlink{truth_sets}{Truth sets}\dotfill \pageref*{truth_sets} \linebreak \noindent\hyperlink{compatibility_relations}{Compatibility relations}\dotfill \pageref*{compatibility_relations} \linebreak \noindent\hyperlink{falsity_sets}{Falsity sets}\dotfill \pageref*{falsity_sets} \linebreak \noindent\hyperlink{from_ternary_frames_to_quantales}{From ternary frames to quantales}\dotfill \pageref*{from_ternary_frames_to_quantales} \linebreak \noindent\hyperlink{generalizations}{Generalizations}\dotfill \pageref*{generalizations} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{phase_spaces}{Phase spaces}\dotfill \pageref*{phase_spaces} \linebreak \noindent\hyperlink{pcas}{PCAs}\dotfill \pageref*{pcas} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{warning}{}\subsection*{{Warning}}\label{warning} \emph{The term `frame' is used in a different sense here than in [[geometric logic]]; see [[frame]]. The usage here is analogous to [[Kripke frames]] in [[modal logic]].} \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{ternary frame} is a way of presenting a model for a [[substructural logic]] (such as [[linear logic]] and [[relevant logic]]) in terms of a set of ``worlds'' or ``states of information'' and a ternary [[relation]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A \textbf{ternary frame} is a set $A$ together with a ternary relation $R$ on $A$; we write $R x y z$ when $R$ holds of three elements $x,y,z\in A$. We may additionally ask that $A$ have a [[partial ordering]]; in this case we demand the compatibility condition that if $R x y z$ and $x'\le x$, $y'\le y$, and $z\le z'$, then also $R x' y' z'$. \hypertarget{modeling_substructural_logic}{}\subsection*{{Modeling substructural logic}}\label{modeling_substructural_logic} We can model [[logic]] using a ternary frame with a ``forcing'' or ``satisfaction'' relation between points of $A$ and formulas. We begin by assigning to each [[atomic formula]] a set of points of $A$ which satisfy it. If $A$ has a partial order, as above, then we ask each of these sets to be up-closed. The [[logical connectives]] can then be defined inductively by clauses such as the following: \begin{itemize}% \item $x \Vdash P \& Q$ (the negative [[conjunction]]) if and only if $x\Vdash P$ and $x\Vdash Q$. \item $x \Vdash P \oplus Q$ (the positive [[disjunction]]) if and only if $x \Vdash P$ or $x\Vdash Q$. \item $x \Vdash \mathbf{0}$ (the positive [[falsity]]) never. \item $x \Vdash \top$ (the negative [[truth]]) always. \item $x \Vdash P \multimap Q$ (the one-sided linear implication) if and only if for all $y,z$, if $R x y z$ and $y\Vdash P$, then $z\Vdash Q$. \item $x \Vdash P \otimes Q$ (the positive conjunction) if and only if there exist $y,z$ such that $R y z x$ and $y\Vdash P$ and $z\Vdash Q$. \end{itemize} The logic obtained thereby will generally be [[substructural logic|substructural]]: it need not satisfy the structural rules like [[weakening rule|weakening]], [[contraction rule|contraction]], or even [[exchange rule|exchange]]. On this page, we have used the notation for substructural connectives from [[linear logic]]. \hypertarget{additional_structure}{}\subsection*{{Additional structure}}\label{additional_structure} We can impose properties or structure on the ternary frame to affect the logic. For instance, if $R x y z$ implies $R y x z$, then the logic we obtain will satisfy the exchange rule. We also need additional structure in order to model positive truth, negative falsity, negative disjunction, and negation. \hypertarget{truth_sets}{}\subsubsection*{{Truth sets}}\label{truth_sets} A \textbf{truth set} in an ordered ternary frame is a subset $T\subseteq A$ such that $x\le y$ if and only if there exists a $t\in T$ with $R t x y$, and if and only if there exists an $s\in T$ with $R x s y$. (If $R$ is commutative, as above, then the two conditions are equivalent.) Alternatively, given an unordered ternary frame $A$ and a subset $T$, we could \emph{define} $x\le y$ in this way, and then require as a property of $T$ that the resulting relation is a [[partial order]]. If $T$ is a truth set, then it makes sense to define \begin{itemize}% \item $x \Vdash \mathbf{1}$ (the positive truth) if and only if $x\in T$. \end{itemize} \hypertarget{compatibility_relations}{}\subsubsection*{{Compatibility relations}}\label{compatibility_relations} One way to model negation (and thereby obtain negative falsity $\bot$ and negative disjunction $\parr$ by duality from positive truth $\mathbf{1}$ and positive conjunction $\otimes$) is with a \textbf{compatibility relation}, which is just a binary relation $C$. If $A$ has a partial order, we demand additionally that if $x C y$ and $x'\le x$ and $y\le y'$, then $x' C y'$. Given such a $C$, we define \begin{itemize}% \item $x \Vdash \neg P$ if and only if for all $y$, if $x C y$ then not $y\Vdash P$. \end{itemize} \hypertarget{falsity_sets}{}\subsubsection*{{Falsity sets}}\label{falsity_sets} Negation can alternatively be modeled using a \emph{false set}. Suppose given a subset $F\subseteq A$, to be the interpretation of the negative falsity $\bot$: \begin{itemize}% \item $x\Vdash \bot$ if and only if $x\in F$. \end{itemize} We can then, if we wish, interpret negation and negative disjunction by defining $\neg P \coloneqq (P\multimap \bot)$ and $P\parr Q \coloneqq \neg (\neg P \otimes \neg Q)$. The latter is most sensible if negation is involutive, which it need not be in general --- that is, if $x \Vdash \neg \neg P$ we need not have $x\Vdash P$. One solution to this (if we want negation to be involutive) is to close up $\Vdash$ under double-negation. This entails replacing the clauses defining the interpretation of the positive connectives $\otimes$, $\oplus$, $\mathbf{1}$, and $\mathbf{0}$ with their double-negation closure. This is commonly done in the [[phase semantics]] for linear logic (see below). \hypertarget{from_ternary_frames_to_quantales}{}\subsection*{{From ternary frames to quantales}}\label{from_ternary_frames_to_quantales} Since the models above associate to formulas \emph{subsets} of $A$, it seems natural to describe them in a purely algebraic way using structure on the [[powerset]] of $A$. In the case when $A$ is a poset, instead of the powerset of $A$ we must use the set of up-closed subsets of $A$. Since this subsumes the unordered case (use the discrete ordering), we henceforth assume $A$ to be a poset, with $R$ having the assumed compatibility relation. In fact, this axiom (which we repeat here for the reader's convenience): \begin{itemize}% \item if $R x y z$ and $x'\le x$, $y'\le y$, and $z\le z'$, then also $R x' y' z'$. \end{itemize} says precisely that $R$ is a $\mathbf{2}$-[[enriched category|enriched]] [[profunctor]] $A^{op} \times A^{op} ⇸ A^{op}$. (Here we are identifying posets with $\mathbf{2}$-enriched categories, where $\mathbf{2}$ is the [[interval category]].) Therefore, by [[Day convolution]], $R$ induces a binary tensor product on the $\mathbf{2}$-enriched [[presheaf category]] $\mathbf{2}^A$, which is precisely the poset of up-closed sets in $A$. This tensor product is precisely the above interpretation of $\otimes$. By the usual Day convolution arguments, this tensor product functor has both left and right adjoints, which are precisely the interpretation of $\multimap$ and its dual. Of course, the interpretations of $\&$ and $\oplus$ are just the categorical product and coproduct in $\mathbf{2}^A$. Similarly, that of $\mathbf{0}$ and $\top$ are the initial and terminal objects. A truth set $T$ corresponds to a profunctor $1 ⇸ A^{op}$ which is a unit for the pro-multiplication $R$. Therefore, in this case the tensor product on $\mathbf{2}^A$ has a unit object, which is precisely $T$, the interpretation of the positive truth $\mathbf{1}$. If we were to additionally add the assumption that $R$ is \emph{associative}, in the sense that \begin{itemize}% \item there exists a $z$ with $R x y z$ and $R z u v$ if and only if there exists a $w$ with $R x w v$ and $R y u w$ \end{itemize} then $A^{op}$ would become a [[promonoidal category|promonoidal]] poset, and hence $\mathbf{2}^A$ would be a complete and cocomplete closed monoidal poset, i.e. a [[quantale]]. A false set $F$ is of course just an arbitrary object of this quantale. Closing up under double-negation means restricting to the sub-poset of elements that are equal to their ``double dual'' $x = (x \multimap F) \multimap F$. Since the self-adjunction $(-\multimap F)$ is [[idempotent adjunction|idempotent]], this sub-poset is itself a quantale, and indeed a [[star-autonomous category|\emph{-autonomous]] one.} The quantale-theoretic content of a compatibility relation is somewhat trickier: as defined it is a profunctor from $A$ to itself, whereas the negation of a pro-$*$-autonomous poset would be a profunctor from $A^{op}$ to $A$. (This would induce a functor $(\mathbf{2}^A)^{op} \to \mathbf{2}^{A}$ due to the special property that $\mathbf{2}\cong \mathbf{2}^{op}$.) Moreover, the definition of $x \Vdash \neg P$ for a compatibility relation is also the (metatheoretic) \emph{negation} of the map on $\mathbf{2}^A$ that would be induced profunctorially. If we put these together, we can see that negation ought to be the the composite of the map $\mathbf{2}^A \to \mathbf{2}^A$ induced by the profunctor $C$ with the isomorphism $\mathbf{2}^A \cong (\mathbf{2}^{A^{op}})^{op}$ (using again that $\mathbf{2}\cong \mathbf{2}^{op}$). At least if $A$ is discrete, so that $A\cong A^{op}$, then this has the correct domain and codomain, so we should be able to assert an axiom ensuring that it makes $\mathbf{2}^A$ $*$-autononmous. To be completed\ldots{} \hypertarget{generalizations}{}\subsubsection*{{Generalizations}}\label{generalizations} The quantale-theoretic viewpoint suggests a generalization replacing $\mathbf{2}$ by any other quantale. That is, for any quantale $Q$, we can define a notion of ``$Q$-valued ternary frame'' that generates a new quantale by Day convolution. Everything goes through without significant change, except that compatibility relations seem to require $Q$ itself to be $*$-autonomous. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{phase_spaces}{}\subsubsection*{{Phase spaces}}\label{phase_spaces} If $A$ is a [[magma]] with multiplication $\cdot$, then we can make it a ternary frame by defining $R x y z$ to mean $x \cdot y = z$. More generally, if $A$ is a poset equipped with a binary multiplication $\cdot$, we can make it an ordered ternary frame by defining $R x y z$ to mean $x \cdot y \le z$. If $\cdot$ has a unit object $t$, then $T = \{t\}$ (in the unordered case) or $T = \{x | t \le x \}$ (in the ordered case) is a truth set. Categorically, this corresponds to the usual way of regarding a [[monoidal category]] as a [[promonoidal category]]. In the special case when $A$ is a commutative [[monoid]] equipped with a ``false set'' $F$ as above (usually written $\bot$) in this context, this semantics for linear logic is called [[phase semantics]] (see there for more). It is usually expressed in terms of the quantale $\mathbf{2}^A$ obtained by Day convolution, but after passing to fixed points of the double-negation monad (in order to obtain an involutive negation). In this context, fixed points of $\neg\neg$ are referred to as \emph{facts}. It is also possible to interpret the exponential modalities $!$ and $?$ of linear logic using phase space semantics. For instance, we can define \begin{itemize}% \item $x \Vdash !P$ if and only if $x$ belongs to the $\neg\neg$-closure of the set of all idempotents $y$ such that $y\Vdash P \& \mathbf{1}$. \end{itemize} and obtain $?P$ by duality. Phase space semantics is \emph{complete} for [[linear logic]], in the sense that a formula is provable if and only if in any phase space semantics we have $1\vDash P$, where $1$ is the unit element of the monoid $A$. \hypertarget{pcas}{}\subsubsection*{{PCAs}}\label{pcas} If $A$ is a [[partial combinatory algebra]] (PCA), we can make it a ternary frame by defining $R x y z$ to mean that $x \cdot y$ is defined and equals $z$. (Similarly, if $A$ is an ordered PCA we can make it an ordered ternary frame.) The resulting interpretation of $\multimap$ almost coincides with the usual interpretation of implication in [[realizability]] over $A$, and the combinators $k,s$ have the property that $k \Vdash P \multimap (Q \multimap P)$ and $s \Vdash (P \multimap Q \multimap R) \multimap (P \multimap Q) \multimap P \multimap R$ for any $P,Q,R$, as would be expected from typed [[combinatory logic]]. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item R. Routley and R.K. Meyer, \emph{The Semantics of Entailment I}, Truth, Syntax and Modality, ed. H. Leblanc, North-Holland Publishing Company (Amsterdam), pp. 199-243. (1973) \item R. Routley and R.K. Meyer, \emph{The Semantics of Entailment, II-III}. Journal of Philosophical Logic, 1, 53-73 and 192-208. (1972) \item Natasha Kurtonina, \emph{Frames and Labels - A modal analysis of categorial inference}. Ph.D. Thesis, Institute of Logic, Language and Information (ILLC), Amsterdam, 1994 \item J. M. Dunn and R. K. Meyer, \emph{Combinators and Structurally Free Logic}. Logic journal of the IGPL, 5(4):505-538, July 1997 \item Greg Restall, \emph{An introduction to substructural logic}. Routledge, 2000. \end{itemize} [[!redirects ternary frames]] \end{document}