\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{test category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{homotopy_category}{Homotopy category}\dotfill \pageref*{homotopy_category} \linebreak \noindent\hyperlink{model_category_structure}{Model category structure}\dotfill \pageref*{model_category_structure} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the 1980-s, [[Grothendieck]] in \emph{Pursuing Stacks} introduced test categories to make the variants of the [[homotopy theory]] based on the usage of combinatorial models with some kind of cell structure (e.g., [[simplicial set]]s, [[cubical set]]s and cellular sets) independent of a particular combinatorial model. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Given any small category $\mathcal{C}$, one considers $\mathcal{C}$-sets, hence [[presheaves]] on $\mathcal{C}$, hence [[contravariant functors]] from $\mathcal{C}$ to $Set$. Given an [[object]] $c\in C$, one considers the [[representable functor]] $Hom_{\mathcal{C}}(-,c)=:\Delta^c$. If $X:\mathcal{C}^{op} \to Set$ is a $\mathcal{C}$-set, the elements of $X(c)$ are called the $c$-cells. By the [[Yoneda lemma]], they correspond to the [[natural transformations]] $\Delta^c\to X$. Let the \textbf{cell category} of $X$, denoted $i_{\mathcal{C}} X$, be the full subcategory of the [[overcategory]] $\mathcal{C}Set/X$ whose objects are the transformations of the form $\Delta^c\to X$. The correspondence $X\mapsto i_{\mathcal{C}}X$ extends to a functor $i_{\mathcal{C}}:\mathcal{C}Set\to Cat$ which has a right adjoint $i_{\mathcal{C}}^*:Cat\to\mathcal{C}Set$ whose object part is given by the formula \begin{displaymath} i_{\mathcal{C}}^*(D)(c):= Hom_{Cat}(\mathcal{C}/c,D). \end{displaymath} Denote the counit of the adjunction $\epsilon : i_{\mathcal{C}}i_{\mathcal{C}}^*\to Id_{Cat}$. Two $\mathcal{C}$-sets $X$ and $Y$ are \textbf{weakly equivalent} if there is a map $f:X\to Y$ inducing an equivalence $f_* : i_{\mathcal{C}} X\to i_{\mathcal{C}} Y$ of their cell categories, i.e., the induced map of [[nerve]]s (``[[classifying spaces]]'') $B(i_{\mathcal{C}} X)\to B(i_{\mathcal{C}} Y)$ is a weak equivalence of simplicial sets. The functor $i_{\mathcal{C}}:\mathcal{C}Set\to Cat$ induces a functor $i_{\mathcal{C}*}:Ho(\mathcal{C}Set)\to Ho(Cat)$ of the homotopy categories. A \textbf{weak test category} is a small category $\mathcal{C}$ such that, for any category $D$ in $Cat$, the component of the counit $\epsilon_D : i_{\mathcal{C}}i_{\mathcal{C}}^* D \to D$ is an equivalence of categories. A \textbf{test category} is any small category $\mathcal{A}$ such that \begin{itemize}% \item ($\mathcal{A}$ is aspherical) its ([[geometric realization]] of the) [[nerve]] (``[[classifying space]]'') $\vert \mathcal{A}\vert$ is [[contractible space|contractible]] \item ($\mathcal{A}$ is a ``local test category'') for every [[object]] $a$ in $\mathcal{A}$ require the [[overcategory]] $\mathcal{A}/a$ to be a weak test category. Thus for any category $D$ in $Cat$, $\epsilon_D : i_{\mathcal{A}/a}i_{\mathcal{A}/a}^* D \to D$ is an [[equivalence of categories]]. \end{itemize} A \textbf{strict test category} is a test category $\mathcal{A}$ such that \begin{itemize}% \item $i_{\mathcal{C}} : \mathcal{C}Set \to Cat$ preserves [[finite products]] up to weak equivalence, \end{itemize} or equivalently, such that \begin{itemize}% \item the induced functor $i_{\mathcal{C}*}:Ho(\mathcal{C}Set)\to Ho(Cat)$ preserves finite products. \end{itemize} Then one proceeds with $\mathcal{A}$-sets. If $\mathcal{A}$ is a test category and $\mathcal{C}$ any small category whose classifying space is contractible (which may or may not be a test category itself), then their cartesian [[product]] $\mathcal{A}\times\mathcal{C}$ is a test category. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{homotopy_category}{}\subsubsection*{{Homotopy category}}\label{homotopy_category} The [[homotopy category]] of a [[category of presheaves]] over a test category, as a [[category with weak equivalences]] is equivalent to the standard homotopy category of [[homotopy theory]]: that of the category of [[simplicial sets]]/[[topological spaces]] with weak equivalences being [[weak homotopy equivalences]]. In other words, presheaves over a test category are models for [[homotopy types]] of [[∞-groupoids]]. \hypertarget{model_category_structure}{}\subsubsection*{{Model category structure}}\label{model_category_structure} The [[presheaf category]] over a test category with the above weak equivalences admits a [[model category]] structure: the [[model structure on presheaves over a test category]]. This is due to (\hyperlink{Cisinski}{Cisinski}) with further developments due to (\hyperlink{Jardine}{Jardine}). \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} Apart from the archeytpical example of the [[simplex category]] we have the following \begin{itemize}% \item The [[cube category]] is a test category (\hyperlink{Grothendieck}{Grothendieck}, \hyperlink{Cisinski}{Cisinski}), however not a strict one (\hyperlink{Kan}{Kan}). (The corresponding [[model category]] is discussed at [[model structure on cubical sets]].=) The category of [[cubes]] equipped with [[connection on a cubical set]] is even a strict test category (\hyperlink{Maltsiniotis}{Maltsiniotis, 2008}). \item The [[groupoid]]-analog $\tilde \Theta$ of the [[Theta category]] is a test category (\hyperlink{Ara}{Ara}). \item The [[tree category]] $\Omega$ is a test category. This was proven in an unpublished note of Cisinski. \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[direct category]] \item [[basic localizer]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The notion of test category was introduced in \begin{itemize}% \item [[Alexandre Grothendieck]], \emph{[[Pursuing Stacks]]}, \href{http://people.math.jussieu.fr/~maltsin/groth/ps/Pursuing_Stacks.djvu}{djvu} \end{itemize} Various conjectures made there are proven in \begin{itemize}% \item [[Denis-Charles Cisinski]], \emph{Les pr\'e{}faisceaux comme mod\`e{}les des types d'homotopie}, Asterisque \textbf{308}, \href{http://www.math.univ-toulouse.fr/~dcisinsk/ast.pdf}{pdf}. \end{itemize} which moreover develops the main toolset and establishes the [[model structure on presheaves over a test category]]. General surveys include \begin{itemize}% \item [[Georges Maltsiniotis]], \emph{La th\'e{}orie de l'homotopie de Grothendieck}, Ast\'e{}risque, 301, pp. 1-140, (2005) (see \href{http://people.math.jussieu.fr/~maltsin/textes.html}{html}) \item [[Rick Jardine]], \emph{Categorical homotopy theory}, Homot. Homol. Appl. \textbf{8} (1), 2006, pp.71--144, (\href{http://www.intlpress.com/HHA/v8/n1/a3/}{HHA}, \href{http://www.intlpress.com/HHA/v8/n1/a3/v8n1a3.pdf}{pdf}) \end{itemize} That the [[cube category]] is a test category is asserted without proof in (\hyperlink{Grothendieck}{Grothendieck}). A proof is spelled out in (\hyperlink{Cisinski}{Cisinski}) That it is not a strict test category is implicitly already in \begin{itemize}% \item [[Dan Kan]], \emph{Abstract homotopy. I} , Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 1092--1096. (\href{http://www.ncbi.nlm.nih.gov/pmc/articles/PMC528202/pdf/pnas00727-0082.pdf}{pdf}) \end{itemize} and led to the preference for [[simplicial sets]] over [[cubical sets]]. That the category of [[cubes]] \emph{equipped with [[connection on a cubical set]]} forms a \emph{strict} test category is shown in \begin{itemize}% \item [[Georges Maltsiniotis]], \emph{La cat\'e{}gorie cubique avec connexions est une cat\'e{}gorie test stricte} . (French. English summary) Homology, Homotopy Appl. 11 (2009), no. 2, 309--326. (\href{http://www.intlpress.com/HHA/v11/n2/a15/}{web}) \end{itemize} The test category nature of the groupoidal [[Theta category]] is discussed in \begin{itemize}% \item [[Dimitri Ara]], \emph{The groupoidal analogue $\tilde \Theta$ to Joyal's category $\Theta$ is a test category} (\href{http://arxiv.org/abs/1012.4319}{arXiv:1012.4319}) \end{itemize} A short introduction can be found in \begin{itemize}% \item Chris Kapulkin, \emph{Introduction to Test Categories} \href{http://www.math.uwo.ca/faculty/kapulkin/notes/test_categories.pdf}{PDF}. \end{itemize} [[!redirects test categories]] [[!redirects strict test category]] [[!redirects strict test categories]] [[!redirects weak test category]] [[!redirects weak test categories]] [[!redirects Grothendieck homotopy theory]] \end{document}