\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{theory (physics)} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general_idea}{General idea}\dotfill \pageref*{general_idea} \linebreak \noindent\hyperlink{formalization}{Formalization}\dotfill \pageref*{formalization} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{general_principles}{General principles}\dotfill \pageref*{general_principles} \linebreak \noindent\hyperlink{types_of_theories}{Types of theories}\dotfill \pageref*{types_of_theories} \linebreak \noindent\hyperlink{the_fundamental_phenomenological_theories}{The fundamental phenomenological theories}\dotfill \pageref*{the_fundamental_phenomenological_theories} \linebreak \noindent\hyperlink{TheoriesAndTheirModels}{Theories and their models}\dotfill \pageref*{TheoriesAndTheirModels} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general_idea}{}\subsubsection*{{General idea}}\label{general_idea} In [[physics]] the term \emph{theory} or \emph{physical theory} traditionally refers, somewhat vaguely, to a given set of notions and rules, usually formulated in the language of [[mathematics]], that describe how some [[physical system]] or class of physical systems behaves. Typically these systems are highly idealized, in that the theories describe only certain aspects. Often a given such theory depends on many free parameters. When a choice of such parameters is made or the range of the parameters is being restricted one tends to call the result a \emph{[[model (in theoretical physics)]]}. For more on this see \emph{\hyperlink{TheoriesAndTheirModels}{Theories and their Models}} below. The most accurate general theory of fundamental physics known is \emph{[[Einstein gravity]]} and \emph{[[quantum field theory]]}. The best available choices of parameters in this general theory that make it fit the specifics of the observed world ([[phenomenology]]) are [[model (in theoretical physics)|models]] which accordingly are called the \emph{standard models}: there is the \emph{[[standard model of particle physics]]} and the \emph{[[standard model of cosmology]]}. \hypertarget{formalization}{}\subsubsection*{{Formalization}}\label{formalization} Beware that, therefore, the use of the terms \emph{theory} and \emph{model} in [[physics]] is \emph{different} from the same terms as used in [[logic]] (see at [[theory (logic)]] and [[model (logic)]]). But most theories of fundamental physics (and many theories of effective physics such as [[solid state physics]]) fit into a pattern that can be [[axiom|axiomatized]] at least to some extent: these physical theories are specified by a ([[local Lagrangian|local]]/[[extended Lagrangian|extended]]) [[Lagrangian]] on a space of [[field (physics)|fields]] over a given [[spacetime]]/[[worldvolume]] [[manifold]] $X$, hence by an [[action functional]] \begin{displaymath} S \;\colon\; [X, \mathbf{Fields}]_{\mathbf{H}} \to U(1) \,. \end{displaymath} In particular the corresponding [[classical field theory]] has as its ``space of models'' the [[critical locus]] \begin{displaymath} \underset{\phi \in [X, \mathbf{Fields}]_{\mathbf{H}}}{\sum} ( \mathbf{d} S_\phi \simeq 0 ) \end{displaymath} of such an [[action functional]], the space of solutions of the [[Euler-Lagrange equations]]. A point in this space is a single ``physically realizable'' configuration of [[field (physics)|fields]] in this theory, disregarding [[quantum field theory]]-corrections, and a small-parameter subspace is often referred to as ``a model'' of the theory. In this perspective of classical field theory, two different action functionals on different spaces of fields but with [[equivalence|equivalent]] [[critical loci]] are regarded as ``equivalent physical theories''. One often sees the term ``classically equivalent'' for this notion used in the literature. But the full [[quantum field theory]] determined by a [[Lagrangian]]/[[action functional]] depends on more than just the [[critical locus]], which is just something like the lowest order approximation to the quantum theory (in a sense that can be made precise, for instance in [[deformation quantization]] in terms of [[power series]] developments in [[Planck's constant]].) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \hypertarget{general_principles}{}\subsubsection*{{General principles}}\label{general_principles} One broad way of classifying physical theories is by the extent to which they take [[quantum physics]] into account. We have \begin{itemize}% \item [[classical field theory]] \item [[prequantum field theory]] \item [[quantum field theory]] \end{itemize} Here [[quantum field theory]] is the most refined framework, which underlies the [[standard model of particle physics]]. The notion of quantum field theory, fundamental as it is, is quite flexible and in particular it naturally captures the concept that a given quantum field theory only describes phenomena that occur below a certain [[energy]] range and treats all phenomena at higher energy as the average over an unspecified more refined theory. This is the notion of \begin{itemize}% \item [[effective quantum field theory]]. \end{itemize} Crucially, [[Einstein gravity]] is not known to have a formulation as a \emph{fundamental} quantum field theory with finitely many unspecified parameters ([[renormalization|renormalizable]]). But it may well be a [[effective quantum field theory]], the approximation to a more refined physical theory valid at higher energies. (This is the issue of [[quantum gravity]].) A proposal for a physical theory that achieves this is called \emph{[[string theory]]}. \hypertarget{types_of_theories}{}\subsubsection*{{Types of theories}}\label{types_of_theories} \begin{itemize}% \item [[free field theory]] \item [[gauge theory]] \end{itemize} \hypertarget{the_fundamental_phenomenological_theories}{}\subsubsection*{{The fundamental phenomenological theories}}\label{the_fundamental_phenomenological_theories} \begin{itemize}% \item [[gravity]], [[Yang-Mills theory]] \item [[Einstein-Maxwell theory]] \item [[Einstein-Yang-Mills theory]] \item [[Einstein-Maxwell-Yang-Mills-Dirac-Higgs theory]] \end{itemize} [[!include standard model of fundamental physics - table]] \hypertarget{TheoriesAndTheirModels}{}\subsubsection*{{Theories and their models}}\label{TheoriesAndTheirModels} \begin{example} \label{}\hypertarget{}{} The [[classical field theory]] of [[gravity]] is a physical theory which asserts that [[spacetime]] is modeled by a [[pseudo-Riemannian manifold]] equipped with certain further [[force]] and [[matter]] [[field (physics)|fields]], such that this data satisfies [[Einstein equations]]. But if one furthermore specifies a particular such pseudo-Riemannian manifold etc. one may call this a \emph{model} of [[gravity]]/[[cosmology]]. The \emph{[[FRW model]]} is an example: here one specifies that the given pseudo-Riemannian metric and the [[matter]] [[field (physics)|field]] content is \emph{homogenous} and \emph{isotropic}. This is highly restrictive but still does not single out a unique solution. The remaining parameter is $k \in \{-1,0,1\}$, determining whether in this solution space has negative, positive or vanishing constant curvature. \end{example} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[model (physics)]], [[experiment]], [[coordination]] \item [[theory of everything]] \item [[computable physics]] \item [[mathematical physics]] \item \href{http://ncatlab.org/nlab/show/string+theory+FAQ#AsideHowToPhysicalTheorieyGenerallyMakePredictionsAnyway}{string theory FAQ -- How do physical theories generally make predictions, anyway?} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[James Wells]], \emph{Lexicon of Theory Qualities} (\href{http://www-personal.umich.edu/~jwells/prms/prm8.pdf}{pdf}) \end{itemize} [[!redirects theories (physics)]] [[!redirects physical theory]] [[!redirects physical theories]] [[!redirects theory in physics]] [[!redirects theories in physics]] [[!redirects theory of physics]] [[!redirects theories of physics]] \end{document}