\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{theta function} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{theta_functions}{}\paragraph*{{Theta functions}}\label{theta_functions} [[!include theta functions - contents]] \hypertarget{complex_geometry}{}\paragraph*{{Complex geometry}}\label{complex_geometry} [[!include complex geometry - contents]] \hypertarget{geometric_quantization}{}\paragraph*{{Geometric quantization}}\label{geometric_quantization} [[!include geometric quantization - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{IdeaInQuantization}{In quantization}\dotfill \pageref*{IdeaInQuantization} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \hypertarget{general}{}\subsubsection*{{General}}\label{general} Generally, a \emph{theta function} ($\theta$-function, $\Theta$-function) is a [[holomorphic section]] of a ([[polarized variety|principally polarizing]]) [[holomorphic line bundle]] over a [[complex torus]] / [[abelian variety]]. (e.g. \hyperlink{Polishchuk03}{Polishchuk 03, section 17}) and in particular over a [[Jacobian variety]] (\hyperlink{Beauville}{Beauville}) such as [[prequantum line bundles]] for (abelian) [[gauge theory]]. The line bundle being principally polarizing means that its space of holomorphic sections is 1-dimensional, hence that it determines the $\theta$-function up to a global complex scale factor. Typically these line bundles themselves are [[Theta characteristics]]. Expressed in [[coordinates]] $\mathbf{z}$ on the [[covering]] $\mathbb{C}^g$ of the [[complex torus]] $\mathbb{C}^g/\mathbb{Z}^g$, a $\theta$-function appears as an actual function $\mathbf{z} \mapsto \theta(\mathbf{z})$ satisfying certain transformation properties, and this is how theta functions are considered. Those theta functions encoding sections of line bundles on a [[Jacobian variety]] $J(\Sigma)$ of a [[Riemann surface]] $\Sigma$ ([[determinant line bundles]], \hyperlink{Freed87}{Freed 87, pages 30-31}) typically vary in a controlled way with the [[complex structure]] modulus $\mathbf{\tau}$ of $\Sigma$ and are hence really functions also of this variable $(\mathbf{z},\mathbf{\tau}) \mapsto \theta(\mathbf{z}, \mathbf{\tau})$ with certain transformation properties. These are the \emph{[[Riemann theta functions]]}. They are the expressions in local coordinates of the covariantly constant sections of the [[Hitchin connection]] on the [[moduli space of Riemann surfaces]] $\mathcal{M}_\Sigma$ (\hyperlink{Hitchin90}{Hitchin 90, remark 4.12}). In the special case that $\Sigma$ is complex 1-dimensional of [[genus]] $g = 1$ (hence a complex [[elliptic curve]]) then such a function $(z,\tau) \mapsto \theta(z,\tau)$ of two variables with the pertinent transformation properties is a \emph{[[Jacobi theta function]]}. Notice that in their dependency not only on $\tau$ but also on $z$ these are properly called \emph{[[Jacobi forms]]}. Finally notice that these line bundles on [[Jacobian varieties]] have non-abelian generalizations to line bundles on [[moduli stacks of vector bundles]] of [[rank]] higher than one, whose sections may then be thought of as \emph{generalized theta functions} (\hyperlink{BeauvilleLaszlo93}{Beauville-Laszlo 93}). Specifically in the context of [[number theory]]/[[arithmetic geometry]], by \emph{the} theta function one usually means the \emph{[[Jacobi theta function]]} (see there for more) for $z = 0$. While this is the historically first and archetypical function from which all modern generalizations derive their name, notice that at fixed $z$ as a function in $\tau$ the ``theta function'' is not actually a section of a line bundle anymore. The generalization in number theory of the Jacobi theta function that does again have a dependence on a twisting is the \emph{[[Dirichlet theta function]]} depending on a [[Dirichlet character]] (which by [[Artin reciprocity]] corresponds to a [[Galois representation]]). Certain integrals of theta functions yield [[zeta functions]], see also at \emph{[[function field analogy]]}. [[!include zeta-functions and eta-functions and theta-functions and L-functions -- table]] \hypertarget{IdeaInQuantization}{}\subsubsection*{{In quantization}}\label{IdeaInQuantization} Theta functions are naturally thought of as being the [[space of states (in geometric quantization)|states]] in the [[geometric quantization]] of the given complex space, the given holomorphic line bundle being the [[prequantum line bundle]] and the condition of holomorphicity of the section being the [[polarization]] condition. See for instance (\hyperlink{Tyurin02}{Tyurin 02}). In this context they play a proming role specifically in the quantization of [[higher dimensional Chern-Simons theory]] and of [[self-dual higher gauge theory]]. See there for more. Specifically the fact that in [[geometric quantization|geometric]] [[quantization of Chern-Simons theory]] in the abelian case, and the [[holographic principle|holographically]] dual [[partition functions]] of the [[WZW model]] the choice of polarization is induced from the choice of [[complex structure]] $\mathbf{\tau}$ on a given [[Riemann surface]] $\Sigma$ and for each such choice there is then a section/[[partition function]] depending on a coordinte $\mathbf{z}$ in the [[Jacobian]] $J(\Sigma)$ is reflected in the double coordinate dependence of the theta function: \begin{displaymath} \theta(\mathbf{z},\mathbf{\tau}) = \theta\left(gauge\;field\;configuration\;on\;\Sigma\;, \; complex\;structure\;on\;\Sigma\right) \,. \end{displaymath} See (\hyperlink{AlvaresGaumeMooreVafa86}{AlvaresGaum\'e{}-Moore-Vafa 86, p. 4}, \hyperlink{Freed87}{Freed 87, section 4}, \hyperlink{FalcetoGawedzki94}{Falceto-Gawedzki 94}, \hyperlink{BunkeOlbrich94}{Bunke-Olbrich 94, around def. 4.5}, \hyperlink{GelcaUribe10a}{Gelca-Uribe 10a}, \hyperlink{GelcaUribe10b}{Gelca-Uribe 10b}, \hyperlink{GelcaHamilton12}{Gelca-Hamilton 12}, \hyperlink{GelcaHamilton14}{Gelca-Hamilton 14}, \hyperlink{Gelca14}{Gelca 14}). Since from the point of view of [[Chern-Simons theory]] this is a [[wavefunction]], one might rather want to write $\Psi(\mathbf{z},\mathbf{\tau})$. For nonabelian CS/WZW theory the same story goes through and one may the elements of the corresponding [[conformal blocks]] ``generalized theta functions'' (\hyperlink{BeauvilleLaszlo93}{Beauville-Laszlo 93}). \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} Consider a [[complex torus]] $T \simeq V/\Gamma$ for given [[finite group]] $\Gamma$. Say that a \emph{system of multipliers} is a system of invertible [[holomorphic functions]] \begin{displaymath} e_\gamma \colon V \longrightarrow \mathbb{C}^\times \hookrightarrow \mathbb{C} \end{displaymath} satisfying the cocycle condition \begin{displaymath} e_{\gamma + \delta}(z) = e_\gamma(z + \delta) e_\delta(z) \,. \end{displaymath} Then a \emph{theta function} is a [[holomorphic function]] \begin{displaymath} \theta \colon V \longrightarrow \mathbb{C} \end{displaymath} for which there is a system of multipliers $\{e_\gamma\}$ satisfying the [[functional equation]] which says that for each $z \in V$ and $\gamma \in \Gamma \hookrightarrow V$ we have \begin{displaymath} \theta(z + \gamma) = e_\gamma(z) \theta(z) \,. \end{displaymath} e.g. (\hyperlink{Beauville}{Beauville, above prop. 2.2}), also (\hyperlink{Beauville}{Beauville, section 3.4}) \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item [[Jacobi theta function]] \item [[Riemann theta function]] \item [[Ramanujan theta function]] \item [[Dedekind eta function]] \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item the [[Verlinde formula]] computes the [[dimension]] of spaces of non-abelian theta functions \item [[special functions]] \item [[cubical structure on a line bundle]] \item [[mock theta function]] \item [[elliptic function]] \end{itemize} [[!include square roots of line bundles - table]] \hypertarget{references}{}\subsection*{{References}}\label{references} Introductions to the traditional notion include \begin{itemize}% \item D.H. Bailey et al, \emph{The Miracle of Theta Functions} (\href{http://www.cecm.sfu.ca/organics/papers/borwein/paper/html/node12.html}{web}) \item M. Bertola, \emph{Riemann surfaces and theta functions} (\href{http://www.mathstat.concordia.ca/faculty/bertola/ThetaCourse/ThetaCourse.pdf}{pdf}) \end{itemize} Modern textbook accounts include \begin{itemize}% \item [[David Mumford]], \emph{Tata Lectures on Theta}, Birkh\"a{}user 1983 \item [[Alexander Polishchuk]], section 17 of \emph{Abelian varieties, Theta functions and the Fourier transform}, Cambridge University Press (2003) (\href{http://math1.unice.fr/~beauvill/pubs/poli.pdf}{review pdf}) \end{itemize} Further discussion with an emphasis of the origin of theta functions in [[geometric quantization]] of [[Chern-Simons theory]] is in \begin{itemize}% \item [[Arnaud Beauville]], \emph{Theta functions, old and new}, Open Problems and Surveys of Contemporary Mathematics SMM6, pp. 99--131 (\href{http://math.unice.fr/~beauvill/pubs/thetaon.pdf}{pdf}) \item [[Andrei Tyurin]], \emph{Quantization, Classical and quantum field theory and theta functions}, AMS 2003 (\href{http://arxiv.org/abs/math/0210466}{arXiv:math/0210466v1}) \item Yuichi Nohara, \emph{Independence of polarization in geometric quantization} (\href{http://geoquant.mi.ras.ru/nohara.pdf}{pdf}) \item Gerard Lion, [[Michele Vergne]], \emph{The Weil representation, Maslov index and theta series} \end{itemize} Specifically the theta functions appearing in [[2d CFT]] as [[conformal blocks]] and as spaces of sections of [[prequantum line bundles]] in [[quantization of Chern-Simons theory]] are discussed for instance in \begin{itemize}% \item [[Luis Alvarez-Gaumé]], [[Gregory Moore]], [[Cumrun Vafa]], \emph{Theta functions, modular invariance, and strings}, Communications in Mathematical Physics Volume 106, Number 1 (1986), 1-4 (\href{http://projecteuclid.org/euclid.cmp/1104115581}{Euclid}) \item [[Luis Alvarez-Gaumé]], [[Jean-Benoit Bost]], [[Gregory Moore]], Philip Nelson, [[Cumrun Vafa]], \emph{Bosonization on higher genus Riemann surfaces}, Communications in Mathematical Physics, Volume 112, Number 3 (1987), 503-552 (\href{http://projecteuclid.org/euclid.cmp/1104159982}{Euclid}) \item [[Daniel Freed]], around p. 30-31 of \emph{On determinant line bundles}, Math. aspects of [[string theory]], ed. S. T. Yau, World Sci. Publ. 1987, (revised \href{http://www.math.utexas.edu/~dafr/Index/determinants.pdf}{pdf}, \href{http://arxiv.org/abs/dg-ga/9505002}{dg-ga/9505002}) \item Fernando Falceto, [[Krzysztof Gawędzki]], \emph{Chern-Simons states at genus one}, Comm. Math. Phys. Volume 159, Number 3 (1994), 549-579. (\href{https://projecteuclid.org/euclid.cmp/1104254732}{Euclid}) \item Kazuhiro Hikami, \emph{Mock (False) Theta Functions as Quantum Invariants} (\href{http://arxiv.org/abs/math-ph/0506073}{arXiv:math-ph/0506073}) \item Kazuhiro Hikami, \emph{Quantum Invariants, Modular Forms, and Lattice Points II}, J. Math. Phys. 47, 102301-32pages (2006) (\href{http://arxiv.org/abs/math/0604091}{arXiv:math/0604091}) \item [[Razvan Gelca]], [[Alejandro Uribe]], \emph{From classical theta functions to topological quantum field theory} (\href{http://arxiv.org/abs/1006.3252}{arXiv:1006.3252}, \href{http://www.math.ttu.edu/~rgelca/berk.pdf}{slides pdf}) \item [[Razvan Gelca]], [[Alejandro Uribe]], \emph{Quantum mechanics and non-abelian theta functions for the gauge group $SU(2)$} (\href{http://arxiv.org/abs/1007.2010}{arXiv:1007.2010}) \item [[Razvan Gelca]], [[Alastair Hamilton]], \emph{Classical theta functions from a quantum group perspective} (\href{http://arxiv.org/abs/1209.1135}{arXiv:1209.1135}) \item [[Razvan Gelca]], [[Alastair Hamilton]], \emph{The topological quantum field theory of Riemann's theta functions} (\href{http://arxiv.org/abs/1406.4269}{arXiv:1406.4269}) \item [[Razvan Gelca]], \emph{Theta Functions and Knots}, World Scientific 2014 (\href{http://www.worldscientific.com/doi/suppl/10.1142/8872/suppl_file/8872_chap01.pdf}{prologue pdf}, \href{http://www.worldscientific.com/worldscibooks/10.1142/8872}{publisher page}) \item Johan Martens [[Jørgen Andersen]], notes by S\o{}ren J\o{}rgensen, p. 53 of \emph{Topological quantum field theories and moduli spaces}, 2011 (\href{http://maths.fuglede.dk/noter/tqftms.pdf}{pdf}) \end{itemize} and more generally the [[partition functions]] of connection-twisted Dirac operators on even-dimensional locally symmetric spaces is discussed in \begin{itemize}% \item [[Ulrich Bunke]], [[Martin Olbrich]], \emph{Theta and zeta functions for locally symmetric spaces of rank one} (\href{http://arxiv.org/abs/dg-ga/9407013}{arXiv:dg-ga/9407013}) \end{itemize} Generalization of this from abelian to non-abelian [[conformal blocks]] to ``generalized theta functions'' appears in \begin{itemize}% \item [[Arnaud Beauville]], [[Yves Laszlo]], \emph{Conformal blocks and generalized theta functions}, Comm. Math. Phys. \textbf{164} (1994), 385 - 419, \href{http://projecteuclid.org/euclid.cmp/1104270837}{euclid}, \href{http://arxiv.org/abs/alg-geom/9309003}{alg-geom/9309003}, \href{http://www.ams.org/mathscinet-getitem?mr=1289330}{MR1289330} \end{itemize} brief review is in \begin{itemize}% \item [[Krzysztof Gawedzki]], section 5 of \emph{Conformal field theory: a case study} in Y. Nutku, C. Saclioglu, T. Turgut (eds.) \emph{Frontier in Physics} 102, Perseus Publishing (2000) (\href{http://xxx.lanl.gov/abs/hep-th/9904145}{hep-th/9904145}) \end{itemize} That the Riemann zeta functions are the local coordinate expressions of the covariantly constant sections of the [[Hitchin connection]] is due to \begin{itemize}% \item [[Nigel Hitchin]], remark 4.12 in \emph{Flat connections and geometric quantization}, : Comm. Math. Phys. Volume 131, Number 2 (1990), 347-380. (\href{http://projecteuclid.org/euclid.cmp/1104200841}{Euclid}) \end{itemize} Relation to [[elliptic genera]] (see also at \emph{[[Jacobi form]]}) \begin{itemize}% \item [[Kefeng Liu]], section 2.4 of \emph{On modular invariance and rigidity theorems}, J. Differential Geom. Volume 41, Number 2 (1995), 247-514 (\href{http://projecteuclid.org/euclid.jdg/1214456221}{EUCLID}, \href{http://www.math.ucla.edu/~liu/Research/loja.pdf}{pdf}) \end{itemize} Theta functions for higher dimensional varieties and their relation to [[automorphic forms]] is due to \begin{itemize}% \item [[André Weil]], \emph{Sur certaines groups d'operateur unitaires}, Acta. Math. 111 (1964), 143-211 \end{itemize} see \href{Langlands+program#Gelbhart84}{Gelbhart 84, page 35 (211)} for review. Further developments here include \begin{itemize}% \item [[Stephen Kudla]], \emph{Relations between automorphic forms produced by theta-functions}, in \emph{Modular Functions of One Variable VI}, Lecture Notes in Math. 627, Springer, 1977, 277--285. \item [[Stephen Kudla]], \emph{Theta functions and Hilbert modular forms},Nagoya Math. J. 69 (1978) 97-106 \item [[Jeffrey Stopple]], \emph{Theta and $L$-function splittings}, Acta Arithmetica LXXII.2 (1995) (\href{http://matwbn.icm.edu.pl/ksiazki/aa/aa72/aa7221.pdf}{pdf}) \item Yum-Tong Siu, \emph{Theta functions in higher dimensions} ([[SiuHigherTheta.pdf:file]]) \end{itemize} [[!redirects theta functions]] [[!redirects theta-function]] [[!redirects theta-functions]] [[!redirects Theta function]] [[!redirects Theta functions]] [[!redirects Theta-function]] [[!redirects Theta-functions]] [[!redirects theta-line bundle]] [[!redirects theta-line bundles]] [[!redirects theta line bundle]] [[!redirects theta line bundles]] [[!redirects theta line-bundle]] [[!redirects theta line-bundles]] \end{document}