\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{thick subcategory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{notions_of_subcategory}{}\paragraph*{{Notions of subcategory}}\label{notions_of_subcategory} [[!include notions of subcategory]] \hypertarget{stable_homotopy_theory}{}\paragraph*{{Stable Homotopy theory}}\label{stable_homotopy_theory} [[!include stable homotopy theory - contents]] \hypertarget{thick_subcategories_and_serre_quotient_categories}{}\section*{{Thick subcategories and Serre quotient categories}}\label{thick_subcategories_and_serre_quotient_categories} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{serre_quotient_category}{Serre quotient category}\dotfill \pageref*{serre_quotient_category} \linebreak \noindent\hyperlink{localizing_subcategories}{Localizing subcategories}\dotfill \pageref*{localizing_subcategories} \linebreak \noindent\hyperlink{thick_subcategories_and_saturation}{Thick subcategories and saturation}\dotfill \pageref*{thick_subcategories_and_saturation} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{link}{Link}\dotfill \pageref*{link} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A [[full subcategory|full]] [[triangulated subcategory]] is \textbf{thick} (or \textbf{\'e{}paisse}) if it is closed under [[extension]]s. Sometimes the same definition is used in [[abelian categories]] as well. However, for many authors, including [[Pierre Gabriel]], in abelian categories, this term denotes the stronger notion of a [[topologizing subcategory]] closed under extensions; in other words, a nonempty full subcategory $T$ of an abelian category $A$ is \textbf{thick} (in the strong sense) iff for every exact sequence \begin{displaymath} 0 \longrightarrow M\longrightarrow M''\longrightarrow M'\longrightarrow 0 \end{displaymath} in $A$, the object $M''$ is in $T$ iff $M$ and $M'$ are in $T$. For some authors the thick subcategory (strong version) is called a \emph{[[Serre subcategory]]} (in a weak sense), the term which we reserve for (generally) a stronger notion. For any subcategory of an [[abelian category]] $A$ one denotes by $\bar{T}$ the full subcategory of $A$ generated by all objects $N$ for which any (nonzero) [[subquotient]] of $N$ in $T$ has a (nonzero) [[subobject]] from $T$. This becomes an idempotent operation on the class of subcategories of $A$ where $T\subset \bar{T}$ iff $T$ is [[topologizing subcategory|topologizing]]. Moreover $\bar{T}$ is always thick in the stronger sense. [[Serre subcategory|Serre subcategories]] in the strong sense are those (nonempty) subcategories which are stable under the operation $T\mapsto\bar{T}$. \hypertarget{serre_quotient_category}{}\subsection*{{Serre quotient category}}\label{serre_quotient_category} Following the extensions of an early work of Serre by Grothendieck and Gabriel, for a thick subcategory $T$ in an [[abelian category]] $A$, one defines the (Serre) quotient category $A/T$ as the one having the same [[objects]] as $A$ and [[hom-sets]] given by \begin{displaymath} (A/T)(X,Y) := colim A(X',Y/Y') \end{displaymath} where the [[colimit]] runs through all [[subobjects]] $X'\subset X$, $Y'\subset Y$ such that $X/X' \in Ob T$, $Y'\in Ob T$. The quotient functor $Q \colon A\to A/T$ is obvious. Notice that the set of morphisms is indeed [[small set|small]], so that the Serre quotient category exists as a [[locally small category]]. On the other hand, one can construct an equivalent [[localization]] by the Gabriel-Zisman localizing at the class $\Sigma$ of all morphisms whose kernel and cokernel are in $T$. Although $\Sigma$ admits the [[calculus of fractions]], this method does not guarantee the existence in general. \hypertarget{localizing_subcategories}{}\subsubsection*{{Localizing subcategories}}\label{localizing_subcategories} A thick subcategory (here always in the strong sense) is said to be [[localizing subcategory|localizing]] if $T$ is thick and the canonical functor $Q$ admits a right adjoint $A/T\to A$, often called the \textbf{section functor}. In other words $A/T$ is a reflective subcategory of $A$. Every coreflective thick subcategory $T$ admits a section functor, and the converse holds if $A$ has injective envelopes. A thick subcategory $T\subset A$ is a coreflective iff $(T,F)$ is a [[torsion theory]] where \begin{displaymath} F := \{X\in Ob A\,|\,A(T,X) = 0\} \end{displaymath} \hypertarget{thick_subcategories_and_saturation}{}\subsection*{{Thick subcategories and saturation}}\label{thick_subcategories_and_saturation} Recall that a class $\Sigma$ of morphisms with category of fractions $\mathcal{C}_\Sigma$ is called \emph{saturated} if $\Sigma$ coincides with the class of morphisms inverted by the canonical functor $\mathcal{C}\to \mathcal{C}_\Sigma$. Let $A$ be an abelian category, $T$ be a thick subcategory in the strong sense and let $\Sigma_T$ be the class of morphisms in $A$ such that their kernel and cokernel are in $T$. Then $\Sigma_T$ has a right and a left calculus of fractions and is saturated for the canonical functor $p:A\to A/T$. Furthermore, $p$ maps to zero objects precisely the objects in $T$. Conversely, let $\Sigma$ be a saturated class of morphisms of $A$ with a calculus of fractions on the right and on the left. Then the full subcategory on the objects that are mapped to zero by the canonical $p:A\to A_\Sigma$ is thick. In other words, there is a bijection between thick subcategories in the strong sense and saturated classes of morphisms with a calculus of fractions on the right and on the left. (For this material see \hyperlink{Schubert70b}{Schubert 1970}, pp.105-107). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[thick subcategory theorem]] \end{itemize} \hypertarget{link}{}\subsection*{{Link}}\label{link} \begin{itemize}% \item Springer eom: \href{http://eom.springer.de/l/l060290.htm}{localization of categories} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Pierre Gabriel]], \emph{Des cat\'e{}gories ab\'e{}liennes}, Bulletin de la Soci\'e{}t\'e{} Math\'e{}matique de France, 90 (1962), p. 323-448 (\href{http://www.numdam.org/item?id=BSMF_1962__90__323_0}{numdam}) \item [[Jacob Lurie]], \emph{[[Chromatic Homotopy Theory]]}, lecture 26, \emph{Thick subcategories} (\href{http://www.math.harvard.edu/~lurie/252xnotes/Lecture26.pdf}{pdf}) \item [[A. L. Rosenberg]], \emph{Noncommutative algebraic geometry and representations of quantized algebras}, MIA \textbf{330}, Kluwer Academic Publishers Group, Dordrecht, 1995. xii+315 pp. ISBN: 0-7923-3575-9 \item H. Schubert, \emph{Kategorien II} , Springer Heidelberg 1970. \end{itemize} [[!redirects thick subcategories]] [[!redirects epaisse subcategory]] [[!redirects epaisse subcategories]] [[!redirects épaisse subcategory]] [[!redirects épaisse subcategories]] [[!redirects Serre quotient category]] [[!redirects thick ideal]] [[!redirects thick ideals]] \end{document}