\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{thunk-force category} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{constructivism_realizability_computability}{}\paragraph*{{Constructivism, Realizability, Computability}}\label{constructivism_realizability_computability} [[!include constructivism - contents]] \hypertarget{category_theory}{}\paragraph*{{Category theory}}\label{category_theory} [[!include category theory - contents]] \hypertarget{thunkforce_category}{}\section*{{Thunk-force category}}\label{thunkforce_category} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{thunkable_morphisms}{Thunkable Morphisms}\dotfill \pageref*{thunkable_morphisms} \linebreak \noindent\hyperlink{relation_to_monads}{Relation to Monads}\dotfill \pageref*{relation_to_monads} \linebreak \noindent\hyperlink{applications}{Applications}\dotfill \pageref*{applications} \linebreak \noindent\hyperlink{related_concepts}{Related Concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{thunk-force category} is a category that models [[call-by-value]] programming languages with effects. More commonly, terms in a call-by-value language are modelled as morphisms in the [[Kleisli category]] of a [[strong monad]]. A thunk-force category axiomatizes the Kleisli category \emph{directly} and is also called an \textbf{abstract Kleisli category}\footnote{We prefer the term thunk-force category since it is ambiguous whether [[Kleisli category]] refers to the Kleisli category of a [[monad]] or a [[comonad]].} . The original category can be recovered from this category if it satisfies certain properties. The name derives from programming terminology. A \textbf{thunk} means a value that represents an unevaluated computation, which can later be \textbf{forced} to be evaluated and perform its [[side effects]]. This is represented by the object $L A$ which could be read as a ``thunk of $A$'' or a ``lazy $A$''. The thunking arrow $\theta_A : A \to L A$ embeds a value as a trivial thunk, and the force $\epsilon_A : L A \to A$ forces the evaluation of its thunked input. The type constructor $L$ and associated thunk and force don't normally appear as a standalone feature in a call-by-value language, but if the language supports first-class functions, they can be implemented in the usual way as a function of unit input. On the model side, this corresponds to the fact that if a thunk-force category is [[premonoidal category|premonoidal closed]], then $L A$ is equivalent to $I \rightharpoonup A$ and $\theta, \epsilon$ can be defined using this structure. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} A thunk-force category \hyperlink{F99}{F\"u{}hrmann 99} consists of \begin{itemize}% \item a category $K$ \item a functor $L : K \to K$ \item a [[unnatural transformation|possibly unnatural transformation]] $\theta : Id_K \to L$ pronounced \textbf{thunk} \item a [[natural transformation]] $\epsilon : L \to Id_K$ pronounced \textbf{force} \end{itemize} such that \begin{itemize}% \item $(L\theta)\theta = (\theta L)\theta$ \item $\theta L$ is a natural transformation \item $\epsilon\theta = \id$ \item $(L\epsilon)(\theta L) = \id$ \end{itemize} The definition can be extended to monoidal closed thunk-force category to model a context and strong monad \hyperlink{F99}{F\"u{}hrmann 99}. \hypertarget{thunkable_morphisms}{}\subsection*{{Thunkable Morphisms}}\label{thunkable_morphisms} A morphism $f : A \to B$ represents an effectful program. The presence of the thunk $\theta$ allows us to make the distinction between the ``pure''/``trivially effectful'' programs and those that have non-trivial effects. A morphism $f : A \to B$ in a thunk-force category is \textbf{thunkable} if $( L f )\theta = \theta f$, i.e., $\theta$ is ``natural with respect to $f$''. Then the conditions on the data $(L,\epsilon,\theta)$ in the definition of thunk-force category can be rephrased as \begin{itemize}% \item $\theta$ is thunkable \item $(L,\epsilon,\theta L)$ is a [[comonad]]. \end{itemize} The presence of non-thunkable morphisms makes $\theta$ fail to be natural, naturality of $\theta$ is exactly the same as saying all morphisms are thunkable. This is the case for the Kleisli category of the identity monad. On the other hand, most monads produce many non-thunkable morphisms. For example in the Kleisli category of the [[maybe monad]], which is equivalent to the category of sets and partial functions, the thunkable morphisms are the total functions. As discussed below, most monads $T$ on a category $C$ used in [[denotational semantics]] satisfy an equalizing requirement which means the thunkable morphisms are in one-to-one correspondence to the morphisms of the original category $C$. \hypertarget{relation_to_monads}{}\subsection*{{Relation to Monads}}\label{relation_to_monads} Let $(T,\eta,\mu)$ be a [[monad]] on a category $C$. The [[Kleisli category]] of $T$ is a thunk-force category. Let $F \dashv G$ denote the adjunction between $C$ and the Kleisli category $C_T$. Define $L = FG$ and $\epsilon$ the counit of the comonad. To define $\theta$, take $F\eta : F \to FT$ and, using the fact that $F$ is an [[identity-on-objects functor]] (or at least bijective on objects), treat it as an [[unnatural transformation]] from $Id_{C_T}\to L$. Then it follows immediately by naturality that every morphism in the image of $F$ is thunkable. More explicitly, using the ``Kleisli arrow'' definition of the Kleisli category, $L$ is just $T$, $\epsilon_A : T A \to T A$ is the identity, and $\theta_A = \eta_{T A} \eta_{A} : A \to T^2 A$. In the opposite direction, starting with a thunk-force category $K$, we can define the (non-full) subcategory of thunkable morphisms $G_\theta K$. Since $\theta L$ is natural, the image of $L$ lands in this subcategory, and is right adjoint to the inclusion. Then there is a monad $L_\theta$ induced on $G_{\theta}K$ by this adjunction. Furthermore, the thunk-force category generated by the Kleisli category of the monad is equivalent to $K$. These constructions exhibit the category of thunk-force categories as a [[reflective subcategory]] of the category of monads. The subcategory can be characterized as the monads satisfying the ``equalizing requirement'', that the unit $\eta$ of the monad is an equalizer in the following diagram: \begin{displaymath} 1_{C}\underset{\quad \eta \quad}{\to}T\underoverset{\quad \eta T \quad}{T \eta}{\rightrightarrows}T^2 \end{displaymath} Which is in practice often satisfied for monads used in [[denotational semantics]]. The definition of the category of morphism of thunk-force categories and proof of this theorem are in \hyperlink{F99}{F\"u{}hrmann 99 section 5}. \hypertarget{applications}{}\subsection*{{Applications}}\label{applications} Since the thunk $L$ is a [[comonad]], the Kleisli category of the comonad is a model of a [[call-by-name]] language. This is a semantic counterpart of the ``thunking translation'' of call-by-name into call-by-value (described for example in \hyperlink{HD97}{Hatcliff-Danvy 97}. \hypertarget{related_concepts}{}\subsection*{{Related Concepts}}\label{related_concepts} \begin{itemize}% \item The dual concept for [[call-by-name]] is a [[runnable monad]]. \item A [[duploid]] is an analogous structure for effectful languages with both [[positive type|positive types]] and [[negative type|negative types]]. \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} Thunk-force categories were introduced (under the name ``abstract Kleisli categories'' in \begin{itemize}% \item Carsten F\"u{}hrmann, ``Direct Models of the Computational Lambda-calculus'' Electronic Notes in Theoretical Computer Science 1999 \item John Hatcliff and Olivier Danvy, ``Thunks and the $\lambda$-Calculus'', Journal of Functional Programming 1997 \end{itemize} \end{document}