\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tileorder} \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{characterizations}{Characterizations}\dotfill \pageref*{characterizations} \linebreak \noindent\hyperlink{using_maximal_chain_properties}{Using maximal chain properties}\dotfill \pageref*{using_maximal_chain_properties} \linebreak \noindent\hyperlink{using_local_configuration_structure}{Using local configuration structure}\dotfill \pageref*{using_local_configuration_structure} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{tileorder} is a \emph{double order}, i.e. a set $T$ equipped with two [[partial orders]] $\le$ and $\sqsubseteq$, which can be realized by a dissection of a rectangle into finitely many subrectangles, the subrectangles being the elements of $T$, in such a way that $a\sqsubseteq b$ iff $a$ ``lies below'' $b$, while $a\le b$ iff $a$ ``lies to the left of'' $b$. Interestingly and importantly, such orders can also be characterized in purely combinatorial, and effectively verifiable, terms. Such orders are of interest in [[double category]] theory, since these are the arrangements of 2-cells in a double category which could potentially be composed (although in a general double category, not all of them can actually be composed). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Suppose given a dissection of a rectangle into finitely many subrectangles. Define $T$ to be the set of subrectangles, and for $a,b\in T$ write $a\le b$ if there exists a finite list $a= x_0, x_1, \dots, x_n = b$ such that for each $i$, the right edge of $x_i$ intersects the left edge of $x_{i+1}$ in more than one point. Define $a\sqsubseteq b$ similarly using top and bottom edges instead of left and right. Clearly $\le$ and $\sqsubseteq$ are [[partial orders]]. A set $T$ equipped with two partial orders $\le$ and $\sqsubseteq$ (a priori, unrelated) is called a \textbf{double order}. A double order which arises in this way from a rectangle dissection is called a \textbf{tileorder}. [[Todd Trimble|Todd]]: Maybe I'm missing what you mean by ``dissection'', but off the bat it looks like you are allowing the ``pinwheel'' as a possible dissection (I hope it is clear what the pinwheel is; Dawson discusses it in one of his papers), but this is the kind of configuration not interpretable in double categories. [[Mike Shulman]]: Yes, we are allowing the pinwheel, even though it is not always composable in a double category. That's what I meant to imply above by \begin{quote}% arrangements of 2-cells in a double category which could potentially be composed (although in a general double category, not all of them can actually be composed) \end{quote} but maybe that isn't sufficiently clear. The notion of tileorder is purely geometric/combinatorial, and you then have to ask which tileorders are composable in a double category (essentially, all that don't contain a pinwheel). (BTW, a picture of the pinwheel can be found \href{http://ncatlab.org/nlab/show/double+category#unbiased_composition_and_associativity_9}{here}.) \hypertarget{characterizations}{}\subsection*{{Characterizations}}\label{characterizations} As proven by Dawson and Par\'e{}, tileorders can be characterized in purely combinatorial terms in a couple of interesting ways. \hypertarget{using_maximal_chain_properties}{}\subsubsection*{{Using maximal chain properties}}\label{using_maximal_chain_properties} A double order $T$ is said to have the \textbf{$\sqsubset$-parallel maximal chain property} if whenever $K$ and $L$ are maximal $\sqsubseteq$-chains in $T$, and we have $k_1,k_2\in K$ and $l_1,l_2\in L$ with $k_1 \sqsubset k_2$, $k_1 \le l_1$, and $l_2 \le k_2$, then there exists an $e\in K\cap L$ such that $k_1\sqsubset e$, $l_1\sqsubset e$, $e\sqsubset k_2$, and $e\sqsubset l_2$. In other words, two maximal $\sqsubseteq$-chains cannot ``swap places'' in the $\le$-order without intersecting. Dually, we define the \textbf{$\lt$-parallel maximal chain property}. A double order $T$ is said to have the \textbf{orthogonal maximal chain property} if every maximal $\le$-chain intersects every maximal $\sqsubseteq$-chain exactly once. \begin{utheorem} A double order is a tileorder iff it has both parallel maximal chain properties and the orthogonal maximal chain property. \end{utheorem} \hypertarget{using_local_configuration_structure}{}\subsubsection*{{Using local configuration structure}}\label{using_local_configuration_structure} A double order is \textbf{strongly antisymmetric} if two unequal elements are never related (in either direction) by both $\lt$ and $\sqsubset$. That is, if $a\neq b$, then at most one of $a\lt b$, $b\lt a$, $a\sqsubset b$, and $b\sqsubset a$ holds. A double order is \textbf{rectangular} if $\exists c.(a\sqsubseteq c \le b)$ iff $\exists d.(a\le d \sqsubseteq b)$, and similarly $\exists c.(a\sqsubseteq c \ge b)$ iff $\exists d.(a\ge d \sqsubseteq b)$. A double order is \textbf{total} if for any $a,b$, there exists a $c$ such that either $a\sqsubseteq c \le b$, or $a\sqsubseteq c \ge b$, or $b \le c \sqsubseteq a$, or $b\ge c \sqsubseteq a$. A double order has the \textbf{first $\sqsubset$-orthogonal butterfly factorization property} if given $a,b,c,d$ with $c\sqsubseteq a$, $c\sqsubseteq b$, $d\sqsubseteq b$, and $d\le a$, there exists an $e$ with $c\sqsubseteq e \sqsubseteq b$ and $d\le e \le a$. The \textbf{second} such property is defined by replacing $\le$ by $\ge$, but not changing $\sqsubseteq$. The \textbf{$\lt$-orthogonal} such properties are defined by switching the roles of $\sqsubseteq$ and $\le$. A double order has the \textbf{$\sqsubset$-parallel butterfly factorization property} if given $a,b,c,d$ with $c\sqsubseteq a$, $b\le c$, $d\sqsubseteq b$, and $d\le a$, there exists an $e$ with $b\le e \le c$ and $d\le e \le a$. The \textbf{$\lt$-parallel} such property is defined by switching the roles of $\sqsubseteq$ and $\le$. \begin{utheorem} A double order is a tileorder iff it is strongly antisymmetric, rectangular, total, and has all the orthogonal and parallel butterfly factorization properties. \end{utheorem} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Dawson and Par\'e{}, ``Characterizing tileorders'' \end{itemize} [[!redirects tileorders]] [[!redirects double order]] [[!redirects double orders]] \end{document}