\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{time-ordered product} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{algebraic_quantum_field_theory}{}\paragraph*{{Algebraic Quantum Field Theory}}\label{algebraic_quantum_field_theory} [[!include AQFT and operator algebra contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{OnRegularPolynomialObservables}{On regular polynomial observables}\dotfill \pageref*{OnRegularPolynomialObservables} \linebreak \noindent\hyperlink{OnLocalObservables}{On local observables}\dotfill \pageref*{OnLocalObservables} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In [[relativistic field theory|relativistic]] [[perturbative quantum field theory]], the \emph{time-ordered product} is a product on suitably well-behave [[observables]] which re-orders its arguments according to the [[causal ordering]] of their spacetime supports befor multiplying with the [[Wick algebra]] product. (Analogously reverse [[causal ordering]] this is called the \emph{reverse-time ordered} or \emph{anti-time ordered} prouct.) For example for point-evaluation [[field observables]] and distinct [[events]] $x,y \in \Sigma$ the time-ordered product is defined by \begin{displaymath} T(\mathbf{\Phi}^a(x) \mathbf{\Phi}^b(y)) \;\coloneqq\; \left\{ \itexarray{ \mathbf{\Phi}^a(x) \mathbf{\Phi}^a(y) &\vert& x\, \text{not in the past of}\ y \\ \mathbf{\Phi}^a(y) \mathbf{\Phi}^a(x) &\vert& \text{otherwise} } \right. \end{displaymath} This may be understood as arising from the [[causal additivity]]-[[axiom]] of the [[perturbative S-matrix]]. It generalizes the 1-dimensional time-ordering (path ordering) of the [[Dyson series]] in [[quantum mechanics]]. More precisely, the time-ordere product is a [[commutative algebra]]-[[structure]] on the [[microcausal polynomial observables]] of a [[free field theory|free]] [[Lagrangian field theory]] equipped with a [[vacuum state]] ([[Hadamard state]]) which on [[regular polynomial observables]] given on the [[regular polynomial observables]] by the [[star product]] which is induced (via \href{star+product#PropagatorStarProduct}{this def.}) by the [[Feynman propagator]] and which is extended from there, in the sense of [[extensions of distributions]], to all [[microcausal polynomial observables]]. (This extension is the ``[[renormalization]]'' of the time-ordered product). \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} \hypertarget{OnRegularPolynomialObservables}{}\subsubsection*{{On regular polynomial observables}}\label{OnRegularPolynomialObservables} \begin{defn} \label{OnRegularPolynomialObservablesTimeOrderedProduct}\hypertarget{OnRegularPolynomialObservablesTimeOrderedProduct}{} \textbf{([[time-ordered product]] on [[regular polynomial observables]])} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] over a [[Lorentzian manifold|Lorentzian]] [[spacetime]] and with [[Green hyperbolic differential equation|Green-hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[differential equations]]; write $\Delta_S = \Delta_+ - \Delta_-$ for the induced [[causal propagator]]. Let moreover $\Delta_H = \tfrac{i}{2}\Delta_S + H$ be a compatible [[Wightman propagator]] and write $\Delta_F = \tfrac{i}{2}(\Delta_+ + \Delta_-) + H$ for the induced [[Feynman propagator]]. Then the \emph{[[time-ordered product]]} on the space of [[off-shell]] [[regular polynomial observable]] $PolyObs(E)_{reg}$ is the [[star product]] induced by the [[Feynman propagator]] (via \href{star+product#PropagatorStarProduct}{this prop.}): \begin{displaymath} \itexarray{ PolyObs(E)_{reg}[ [\hbar] ] \otimes PolyObs(E)_{reg}[ [\hbar] ] &\overset{}{\longrightarrow}& PolyObs(E)_{reg}[ [\hbar] ] \\ (A_1, A_2) &\mapsto& \phantom{\coloneqq} A_1 \star_F A_2 } \end{displaymath} hence \begin{displaymath} A_1 \star_F A_2 \; \coloneqq \; ((-)\cdot(-)) \circ \exp\left( \underset{\Sigma \times \Sigma}{\int} \Delta_F^{a b}(x,y) \frac{\delta}{\delta \mathbf{\Phi}^a(x)} \otimes \frac{\delta}{\delta \mathbf{\Phi}^b(y)} \, dvol_\Sigma(x) \, dvol_\Sigma(y) \right) \end{displaymath} (Notice that this does not descend to the [[on-shell]] observables, since the [[Feynman propagator]] is not a solution to the \emph{homogeneous} [[equations of motion]].) \end{defn} \begin{prop} \label{CausalOrderingTimeOrderedProductOnRegular}\hypertarget{CausalOrderingTimeOrderedProductOnRegular}{} \textbf{([[time-ordered product]] is indeed causally ordered [[Wick algebra]] product)} Let $(E,\mathbf{L})$ be a [[free field theory|free]] [[Lagrangian field theory]] over a [[Lorentzian manifold|Lorentzian]] [[spacetime]] and with [[Green hyperbolic differential equation|Green-hyperbolic]] [[Euler-Lagrange equation|Euler-Lagrange]] [[differential equations]]; write $\Delta_S = \Delta_+ - \Delta_-$ for the induced [[causal propagator]]. Let moreover $\Delta_H = \tfrac{i}{2}\Delta_S + H$ be a compatible [[Wightman propagator]] and write $\Delta_F = \tfrac{i}{2}(\Delta_+ + \Delta_-) + H$ for the induced [[Feynman propagator]]. Then the [[time-ordered product]] on [[regular polynomial observables]] (def. \ref{OnRegularPolynomialObservablesTimeOrderedProduct}) is indeed a time-ordering of the [[Wick algebra]] product $\star_H$ in that for all [[pairs]] of [[regular polynomial observables]] \begin{displaymath} A_1, A_2 \in PolyObs(E)_{reg}[ [\hbar] ] \end{displaymath} with [[disjoint subset|disjoint]] [[spacetime]] [[support]] we have \begin{displaymath} T(A_1 A_2) \;=\; \left\{ \itexarray{ A_1 \star_H A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \star_H A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \,. \end{displaymath} Here $S_1 {\vee\!\!\!\wedge} S_2$ is the [[causal order]] relation (``$S_1$ does not intersect the [[past cone]] of $S_2$''). Beware that for general [[pairs]] $(S_1, S-2)$ of subsets neither $S_1 {\vee\!\!\!\wedge} S_2$ nor $S_2 {\vee\!\!\!\wedge} S_1$. \end{prop} \begin{proof} Recall the following facts: \begin{enumerate}% \item the [[advanced and retarded propagators]] $\Delta_{\pm}$ by definition are [[support|supported]] in the [[future cone]]/[[past cone]], respectively \begin{displaymath} supp(\Delta_{\pm}) \subset \overline{V}^{\pm} \end{displaymath} \item they turn into each other under exchange of their arguments (\href{causal+propagator#CausalPropagatorIsSkewSymmetric}{this cor.}): \begin{displaymath} \Delta_\pm(y,x) = \Delta_{\mp}(x,y) \,. \end{displaymath} \item the real part $H$ of the [[Feynman propagator]], which by definition is the real part of the [[Wightman propagator]] is symmetric (by definition or else by \href{Hadamard+distribution#SkewSymmetricPartOfHadmrdPropagatorIsCausalPropagatorForKleinGordonEquationOnMinkowskiSpacetime}{this prop.}): \begin{displaymath} H(x,y) = H(y,x) \end{displaymath} \end{enumerate} Using this we compute as follows: \begin{displaymath} \begin{aligned} A_1 \underset{\Delta_{F}}{\star} A_2 \; & = A_1 \underset{\tfrac{i}{2}(\Delta_+ + \Delta_-) + H}{\star} A_2 \\ & = \left\{ \itexarray{ A_1 \underset{\tfrac{i}{2}\Delta_+ + H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_1 \underset{\tfrac{i}{2}\Delta_- + H}{\star} A_2 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \\ & = \left\{ \itexarray{ A_1 \underset{\tfrac{i}{2}\Delta_+ + H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \underset{\tfrac{i}{2}\Delta_+ + H}{\star} A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \\ & = \left\{ \itexarray{ A_1 \underset{\tfrac{i}{2}(\Delta_+ - \Delta_-) + H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \underset{\tfrac{i}{2}(\Delta_+ - \Delta_-) + H}{\star} A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \\ & = \left\{ \itexarray{ A_1 \underset{\Delta_H}{\star} A_2 &\vert& supp(A_1) {\vee\!\!\!\wedge} supp(A_2) \\ A_2 \underset{\Delta_H}{\star} A_1 &\vert& supp(A_2) {\vee\!\!\!\wedge} supp(A_2) } \right. \end{aligned} \end{displaymath} \end{proof} \begin{prop} \label{IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}\hypertarget{IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}{} \textbf{([[time-ordered product]] on [[regular polynomial observables]] [[isomorphism|isomorphic]] to pointwise product)} The [[time-ordered product]] on [[regular polynomial observables]] (def. \ref{CausalOrderingTimeOrderedProductOnRegular}) is [[isomorphism|isomorphism]] to the pointwise product of [[observables]] (\href{A+first+idea+of+quantum+field+theory#Observable}{this def.}) via the [[linear isomorphism]] \begin{displaymath} \mathcal{T} \;\colon\; PolyObs(E)_{reg}[ [\hbar] ] \longrightarrow PolyObs(E)_{reg}[ [\hbar] ] \end{displaymath} given by \begin{displaymath} \mathcal{T}A \;\coloneqq\; \exp\left( \tfrac{1}{2} \hbar \underset{\Sigma}{\int} \Delta_F(x,y)^{a b} \frac{\delta^2}{\delta \mathbf{\Phi}^a(x) \delta \mathbf{\Phi}^b(y)} \right) A \end{displaymath} in that \begin{displaymath} \begin{aligned} T(A_1 A_2) & \coloneqq A_1 \star_{F} A_2 \\ & = \mathcal{T}( \mathcal{T}^{-1}(A_1) \cdot \mathcal{T}^{-1}(A_2) ) \end{aligned} \end{displaymath} hence \begin{displaymath} \itexarray{ PolyObs(E)_{reg}[ [\hbar] ] \otimes PolyObs(E)_{reg}[ [\hbar] ] &\overset{(-)\cdot (-)}{\longrightarrow}& PolyObs(E)_{reg}[ [\hbar] ] \\ {}^{\mathllap{\mathcal{T} \otimes \mathcal{T}}}_\simeq\Big\downarrow && \downarrow^{\mathrlap{\mathcal{T}}}_\simeq \\ PolyObs(E)_{reg}[ [\hbar] ] \otimes PolyObs(E)_{reg}[ [\hbar] ] &\overset{(-) \star_F (-)}{\longrightarrow}& PolyObs(E)_{reg}[ [\hbar] ] } \end{displaymath} \end{prop} (\hyperlink{BrunettiDuetschFredenhagen09}{Brunetti-Dütsch-Fredenhagen 09, (12)-(13)}, \hyperlink{FredenhagenRejzner11b}{Fredenhagen-Rejzner 11b, (14)}) \begin{proof} Since the [[Feynman propagator]] is symmetric (\href{A+first+idea+of+quantum+field+theory#SymmetricFeynmanPropagator}{this prop.}), the statement is a special case of \href{star+product#SymmetricContribution}{this prop.}). \end{proof} \begin{example} \label{RegularObservablesExponentialTimeOrdered}\hypertarget{RegularObservablesExponentialTimeOrdered}{} \textbf{([[time-ordered product|time-ordered]] [[exponential]] of [[regular polynomial observables]])} Let \begin{displaymath} V \in PolyObs_{reg, deg = 0}[ [ \hbar ] ] \end{displaymath} be a [[regular polynomial observables]] of degree zero, and write \begin{displaymath} \exp(V) = 1 + V + \tfrac{1}{2!} V \cdot V + \tfrac{1}{3!} V \cdot V \cdot V + \cdots \end{displaymath} for the [[exponential]] of $V$ with respect to the pointwise product. Then the [[exponential]] $\exp_{\mathcal{T}}(V)$ of $V$ with respect to the [[time-ordered product]] $\star_F$ (def. \ref{OnRegularPolynomialObservablesTimeOrderedProduct}) is equal to the [[conjugation]] of the exponential with respect to the pointwise product by the time-ordering isomorphism $\mathcal{T}$ from prop. \ref{IsomorphismOnRegularPolynomialObservablesTimeOrderedandPointwise}: \begin{displaymath} \begin{aligned} \exp_{\mathcal{T}}(V) & \coloneqq 1 + V + \tfrac{1}{2} V \star_F V + \tfrac{1}{3!} V \star_F V \star_F V + \cdots \\ & = \mathcal{T} \circ \exp(-) \circ \mathcal{T}^{-1}(V) \end{aligned} \end{displaymath} \end{example} \hypertarget{OnLocalObservables}{}\subsubsection*{{On local observables}}\label{OnLocalObservables} The time-ordered product on regular polynomial observables from prop. \ref{OnRegularPolynomialObservablesTimeOrderedProduct} extends to a product on [[polynomial observable|polynomial]] [[local observables]], then taking values in [[microcausal observables]]: \begin{displaymath} T \;\colon\; PolyLocObs(E)^{\otimes_n}[ [\hbar] ] \longrightarrow PolyObs(E)_{mc}[ [\hbar] ] \,. \end{displaymath} This extension is not unique. A choice of such an extension, satisfying some evident compatibility conditions, is a choice of \emph{[[renormalization scheme]]} for the given [[perturbative quantum field theory]]. Every such choice corresponds to a choice of [[perturbative S-matrix]] for the theory. This construction is called \emph{[[causal perturbation theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} [[!include products in pQFT -- table]] $\,$ [[!include Wick algebra -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} See also the references at \emph{[[S-matrix]]} The equivalence of the time-ordered product on regular observables to the point-wise product was maybe first highlighted in \begin{itemize}% \item [[Romeo Brunetti]], [[Michael Dütsch]], [[Klaus Fredenhagen]], p. 6 of \emph{Perturbative Algebraic Quantum Field Theory and the Renormalization Groups}, Adv. Theor. Math. Physics 13 (2009), 1541-1599 (\href{http://arxiv.org/abs/0901.2038}{arXiv:0901.2038}) \end{itemize} and then further amplified in \begin{itemize}% \item [[Klaus Fredenhagen]], [[Kasia Rejzner]], p. 6 of \emph{Batalin-Vilkovisky formalism in perturbative algebraic quantum field theory}, Commun. Math. Phys. 317(3), 697--725 (2012) (\href{https://arxiv.org/abs/1110.5232}{arXiv:1110.5232}) \end{itemize} [[!redirects time-ordered products]] [[!redirects time ordered product]] [[!redirects time ordered products]] [[!redirects reverse-time ordered product]] [[!redirects reverse-time ordered products]] [[!redirects anti-time ordered product]] [[!redirects anti-time ordered products]] \end{document}