\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{tiny object} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{compact_objects}{}\paragraph*{{Compact objects}}\label{compact_objects} [[!include compact object - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{InCategoriesOfModulesOverRings}{In categories of modules over rings}\dotfill \pageref*{InCategoriesOfModulesOverRings} \linebreak \noindent\hyperlink{in_presheaf_categories}{In presheaf categories}\dotfill \pageref*{in_presheaf_categories} \linebreak \noindent\hyperlink{AtomsInALocalTopos}{In a local topos}\dotfill \pageref*{AtomsInALocalTopos} \linebreak \noindent\hyperlink{AtomsInACohesiveTopos}{In a cohesive topos}\dotfill \pageref*{AtomsInACohesiveTopos} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} Let $E$ be a [[locally small category]] with all small [[colimits]]. An object $e$ of $E$ is called \textbf{tiny} or \textbf{small-[[projective object]]} (\hyperlink{Kelly}{Kelly, \S{}5.5}) if the [[hom-functor]] $E(e, -) : E \to Set$ preserves small colimits. More generally, for $V$ a [[cosmos]] and $E$ a $V$-[[enriched category]], $e \in E$ is called tiny if $E(e,-) : E \to V$ preserves all small colimits. \end{defn} \begin{remark} \label{}\hypertarget{}{} Since being an [[epimorphism]] is a ``colimit-property'' (a morphism is epic iff its [[pushout]] with itself consists of identities), if $e$ is tiny then $E(e,-)$ preserves epimorphisms, which is to say that $e$ is [[projective object|projective]] (with respect to epimorphisms). This is presumably the origin of the term ``small-projective'', i.e. the corepresentable functor preserves small colimits instead of just a certain type of finite one. \end{remark} \begin{defn} \label{Atomic}\hypertarget{Atomic}{} If $E$ is [[cartesian closed category|cartesian closed]] and the [[inner hom]] $(-)^e$ has a [[right adjoint]] (and hence preserves all colimits), $e$ is called (internally) \textbf{atomic} or [[infinitesimal object|infinitesimal]]. \end{defn} (See for instance \hyperlink{Lawvere97}{Lawvere 97}.) \begin{remark} \label{}\hypertarget{}{} The [[right adjoint]] in def. \ref{Atomic} is sometimes called an ``[[amazing right adjoint]]'', particularly in the context of [[synthetic differential geometry]]. \end{remark} \begin{remark} \label{}\hypertarget{}{} Various terminological discrepancies in the literature hinge on the distinction between internal notions and external notions. Thus, if $E$ is a [[cartesian closed category]] with small colimits, we may say $e \in Ob(E)$ is \emph{internally} tiny if the functor $(-)^e: E \to E$ preserves small colimits. Relatedly, the word ``atomic'' has been used in both an external sense where $E(e, -): E \to Set$ has a right adjoint, as in Bunge's thesis, and in an internal sense, as when Lawvere refers to $e$ as an a.t.o.m. (``amazingly tiny object model'') if $(-)^e: E \to E$ has a right adjoint. But under certain hypotheses, the two notions coincide; see for instance Proposition \ref{coincide}. \end{remark} \begin{prop} \label{InSheafToposTinyImpliesAtomic}\hypertarget{InSheafToposTinyImpliesAtomic}{} If $E$ is a [[sheaf topos]], then (externally) tiny objects and externally atomic objects coincide. \end{prop} \begin{proof} Clearly any externally atomic object is tiny. For the converse, use a dual form of the special [[adjoint functor theorem]] (SAFT): $E$ is [[locally small category|locally small]], [[cocomplete category|cocomplete]], and [[well-powered category|co-well-powered]] (because for any object $X$, equivalence classes of [[epimorphisms]] with domain $X$ are in natural bijection with [[internal equivalence relations]] on $X$, and there is a small set of these because they are contained in a set isomorphic to $\hom(X \times X, \Omega)$), and finally $E$ has a [[generating set]] (namely, the set of associated [[sheaves]] of [[representables]] coming from a small [[site]] presentation for $E$). Under these conditions, the SAFT guarantees that any [[cocontinuous functor]] $E \to C$ has a right adjoint, provided that $C$ is locally small; then apply this to the case $C = Set$. \end{proof} Clearly the statement and the proof of Proposition \ref{InSheafToposTinyImpliesAtomic} carry over when ``external'' is replaced by ``internal'' throughout. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{prop} \label{}\hypertarget{}{} Any [[retract]] of a tiny object is tiny, since [[split idempotent|splitting of idempotents]] is an [[absolute colimit]] (see also \hyperlink{Kelly}{Kelly, prop. 5.25}). \end{prop} \hypertarget{InCategoriesOfModulesOverRings}{}\subsubsection*{{In categories of modules over rings}}\label{InCategoriesOfModulesOverRings} The notion of tiny object is clearly highly dependent on the base of [[enriched category|enrichment]]. For example, for a [[ring]] $R$, the tiny objects in the category of left $R$-[[category of modules|modules]] $Ab^R$, considered as an [[Ab]]-[[enriched category]], are the [[finitely generated module|finitely generated]] [[projective modules]]. Certainly f.g. projective modules are tiny because $R$ is tiny (the [[forgetful functor]] $\hom(R, -): Ab^R \to Ab$ preserves $Ab$-[[colimits]]) and the closure of $R$ under finite direct sums and retracts, which are absolute $Ab$-[[colimits]], comprise finitely generated projective modules. See also \emph{[[Cauchy completion]]}. On the other hand, when the category $Ab^R$ is considered as a [[Set]]-[[enriched category]], there are \emph{no} tiny objects. In fact this is true for any Set-enriched category with a [[zero object]]: Let $X$ be a tiny object. The morphism $X \to 0$ induces a map $Hom(X,X) \to Hom(X,0)$. This map has empty codomain (since $Hom(X,-)$ preserves the zero object, as an empty colimit). Thus $Hom(X,X) = \emptyset$ in contradiction to $id_X \in Hom(X,X)$. \hypertarget{in_presheaf_categories}{}\subsubsection*{{In presheaf categories}}\label{in_presheaf_categories} \begin{example} \label{}\hypertarget{}{} In a [[presheaf category]] every [[representable functor|representable]] is a tiny object: since colimits of presheaves are computed objectwise (see [[limits and colimits by example]]) and using the [[Yoneda lemma]] we have for $U$ a [[representable]] functor and $F : J \to PSh$ a diagram that \begin{displaymath} Hom(U, \lim_\to F) \simeq (\lim_\to F)(U) \simeq \lim_\to F(U) \end{displaymath} where now the last [[colimit]] is in [[Set]]. \end{example} Thus, in a presheaf category, any [[retract]] of a representable functor is tiny. In fact the converse also holds: \begin{prop} \label{}\hypertarget{}{} The tiny objects in a [[presheaf category]] are precisely the [[retracts]] of [[representable functor]]s. \end{prop} This is for instance (\hyperlink{BorceuxDejean}{BorceuxDejean, prop 2}). For instance, the only tiny object in [[G-set]] is $G$ itself with its regular action. Thus, if the domain category is [[Cauchy complete category|Cauchy complete]] (has [[split idempotent]]s), then every tiny presheaf is representable; and more generally the Cauchy completion or [[Karoubi envelope]] of a category can be defined to consist of the tiny presheaves on it. See [[Cauchy complete category]] for more on this. \begin{prop} \label{coincide}\hypertarget{coincide}{} For presheaves on a category $C$ with finite products, the notions of externally tiny object and internally tiny object coincide. \end{prop} \begin{proof} Without loss of generality, we may assume $C$ is Cauchy complete (note that the Cauchy completion of a category with finite products again has finite products), so that tiny presheaves coincide with representable functors $C(-, c)$. Let $E$ denote the presheaf category. Given that the empty product $1$ is tiny, if $e \in Ob(E)$ is internally tiny, then the composite \begin{displaymath} E(e, -): E \to Set = \left(E \stackrel{(-)^e}{\to} E \stackrel{E(1,-)}{\to} Set \right) \end{displaymath} is cocontinuous, hence $e$ is externally tiny. In the other direction, recall how exponentials $G^F$ in $E = PSh(C)$ are constructed: we have the formula \begin{displaymath} G^F(c) = E(C(-, c) \times F, G). \end{displaymath} In particular, if $F$ is externally tiny, hence a representable $C(-, c')$, we have \begin{displaymath} G^F(c) = E(C(-, c) \times C(-, c'), G) \cong E(C(-, c \times c'), G) \cong G(c \times c') \end{displaymath} where the last isomorphism is by the [[Yoneda lemma]]. Since colimits in $PSh(C)$ are computed pointwise, whereby evaluation functors $ev_c: PSh(C) \to Set$ preserve colimits, we see that $(-)^{C(-, c')}: G \mapsto G(- \times c')$ preserves colimits, so that $F = C(-, c')$ is internally tiny. The amazing right adjoint $R$ in this case takes a presheaf $H$ to the presheaf $R H$ that takes an object $d$ to the set $(R H)(d) = E(C(- \times c', d), H)$. \end{proof} (Compare the result \href{https://ncatlab.org/nlab/show/internally+projective+object#enough}{here}.) In the context of [[topos theory]] we say, for $C$ [[small category]], that an [[adjoint triple]] of [[functors]] \begin{displaymath} Set \stackrel{\overset{f_!}{\to}}{\stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}}} [C,Set] \end{displaymath} is an [[essential geometric morphism]] of [[topos]]es $f : Set \to [C,Set]$; or an \textbf{[[point of a topos|essential point]]} of $[C,Set]$. By the [[adjoint functor theorem]] this is equivalently simply a single functor $f^* : [C, Set] \to Set$ that preserves all small [[limits]] and [[colimits]]. Write \begin{displaymath} Topos_{ess}(Set,[C,Set]) \simeq LRFunc([C,Set], Set) \subset Func([C,Set], Set) \end{displaymath} for the [[full subcategory]] of the [[functor category]] on functors that have a [[left adjoint]] and a [[right adjoint]]. \begin{prop} \label{}\hypertarget{}{} For $C$ a [[small category]] there is an [[equivalence of categories]] \begin{displaymath} \overline{C} := TinyObjects([C,Set]) \simeq Topos_{ess}(Set, [C,Set])^{op} \end{displaymath} of the tiny objects of $[C,Set]$ with the category of essential points of $[C,Set]$. \end{prop} \begin{proof} We first exhibit a [[full subcategory|full inclusion]] $Topos_{ess}(Set,[C,Set])^{op} \hookrightarrow \overline{C}$. So let $Set \stackrel{\overset{f_!}{\to}}{\stackrel{\overset{f^*}{\leftarrow}}{\underset{f_*}{\to}}} [C,Set]$ be an [[essential geometric morphism]]. Then because $f_!$ is [[left adjoint]] and thus preserves all small [[colimits]] and because every [[set]] $S \in Set$ is the colimit over itself of the singleton set we have that \begin{displaymath} f_! S \simeq \coprod_{s \in S} f_!(*) \end{displaymath} is fixed by a choice of [[copresheaf]] \begin{displaymath} F := f_!(*) \in [C, Set] \,. \end{displaymath} The $(f_! \dashv f^*)$-[[adjunction]] [[isomorphism]] then implies that for all $H \in [C,Set]$ we have \begin{displaymath} f^* H \simeq Set(*, f^* H) \simeq [C,Set](f_! *, H) \simeq [C,Set](F,H) \,. \end{displaymath} naturally in $H$, and hence that \begin{displaymath} f^*(-) \simeq [C,Set](F,-) : Set \to [C,Set] \,. \end{displaymath} By assumption this has a further right adjoint $f_!$ and hence preserves all [[colimits]]. By the discussion at [[tiny object]] it follows that $F \in [C,Set]$ is a tiny object. By prop. \ref{CauchyComplIsFullSubcatOnTinyObjects} this means that $F$ belongs to $\overline{C} \subset [C,Set]$. A morphism $f \Rightarrow g$ between [[geometric morphisms]] $f,g : Set \to [C,Set]$ is a [[geometric transformation]], which is a [[natural transformation]] $f^* \Rightarrow g^*$, hence by the above a natural transformation $[C,Set](F,-) \Rightarrow [C,Set](G,-)$. By the [[Yoneda lemma]] these are in bijection with morphisms $G \to H$ in $[C,Set]$. This gives the full inclusion $Topos_{ess}(Set,[C,Set])^{op} \subset \overline{C}$. The converse inclusion is now immediate by the same arguments: since the objects in $\overline{C}$ are precisely the [[tiny object]]s $F \in [C,Set]$ each of them corresponds to a functor $[C,Set](F,-) : [C,Set] \to Set$ that has a [[right adjoint]]. Since this generally also has a left adjoint, it is the [[inverse image]] of an essential geometric morphism $f : Set \to [C,Set]$. \end{proof} \hypertarget{AtomsInALocalTopos}{}\subsubsection*{{In a local topos}}\label{AtomsInALocalTopos} \begin{prop} \label{SliceOverAtomicObject}\hypertarget{SliceOverAtomicObject}{} The [[terminal object]] in any [[local topos]] is atomic. In particular for $\mathbf{H}$ a [[topos]] and $X \in \mathbf{H}$ an object, the [[slice topos]] $\mathbf{H}_{/X}$ is [[local topos|local]] precisely if $X$ is atomic. \end{prop} This is discuss at \href{local+geometric+morphism#LocalOverTopoes}{local geometric morphism -- Local over-toposes}. \hypertarget{AtomsInACohesiveTopos}{}\subsubsection*{{In a cohesive topos}}\label{AtomsInACohesiveTopos} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]]. Write $(\int \dashv \flat \dashv \sharp)$ for its [[adjoint triple]] of [[shape modality]] $\dashv$ [[flat modality]] $\dashv$ [[sharp modality]]. Consider the following basic notion from \emph{[[cohesive (∞,1)-topos -- structures]]}. \begin{defn} \label{}\hypertarget{}{} An [[object]] $X \in \mathbf{H}$ is called \emph{geometrically contractible} if its [[shape modality|shape]] is [[contractible]], in that $\int X \simeq \ast$. \end{defn} \begin{prop} \label{InCohesionAtomicObjectIsGeometricallyContractible}\hypertarget{InCohesionAtomicObjectIsGeometricallyContractible}{} Over the [[base (∞,1)-topos]] [[∞Grpd]], every atom in a [[cohesive (∞,1)-topos]] is geometrically contractible. \end{prop} \begin{proof} By [[reflective sub-(∞,1)-category|reflection]] of the [[discrete objects]] it will be sufficient to show that for all [[discrete objects]] $S \in \infty Grpd \hookrightarrow \mathbf{H}$ we have an [[equivalence]] \begin{displaymath} \left[\int X , S\right] \simeq S \,. \end{displaymath} Now notice that, by the discussion at \emph{\href{limit+in+a+quasi-category#Tensoring}{∞-tensoring}}, every [[discrete object]] here is the [[homotopy colimit]] indexed by itself of the [[(∞,1)-functor]] constant on the [[terminal object]]: \begin{displaymath} S \simeq \underset{\rightarrow}{\lim}_S \ast \,. \end{displaymath} Using this we have \begin{displaymath} \begin{aligned} \left[\int X, S\right] &\simeq \left[ X, \flat S \right] \\ & \simeq \left[ X, \flat \underset{\rightarrow}{\lim}_S \ast \right] \\ & \simeq \left[ X, \underset{\rightarrow}{\lim}_S \flat \ast \right] \\ & \simeq \underset{\rightarrow}{\lim}_S \left[ X, \flat \ast \right] \\ & \simeq \underset{\rightarrow}{\lim}_S \left[ X, \ast \right] \\ & \simeq \underset{\rightarrow}{\lim}_S \ast \\ & \simeq S \end{aligned} \,. \end{displaymath} where we applied, in order of appearance: the $(\int \dashv \flat)$-[[adjunction]], the $\infty$-[[tensoring]], the fact that $\flat$ is also [[left adjoint]] (hence the existence of the [[sharp modality]]), the assumption that $X$ is atomic, then again the fact that $\flat$ is right adjoint, that $\ast$ is the terminal object and finally again the $\infty$-tensoring. \end{proof} \begin{prop} \label{SliceOfCohesionOverAtomIsCohesive}\hypertarget{SliceOfCohesionOverAtomIsCohesive}{} Let $\mathbf{H}$ be a [[cohesive (∞,1)-topos]] over [[∞Grpd]] and let $X \in \mathbf{H}$ be an atomic object. Then the [[slice (∞,1)-topos]] $\mathbf{H}_{/X}$ sits by an [[adjoint quadruple]] over [[∞Grpd]] whose leftmost adjoint preserves the terminal object. \end{prop} \begin{proof} By the discussion at [[étale geometric morphism]], the [[slice (∞,1)-topos]] comes with an [[adjoint triple]] of the form \begin{displaymath} \mathbf{H}_{/X} \stackrel{\overset{\sum_X}{\longrightarrow}}{\stackrel{\overset{(-)\times X}{\leftarrow}}{\stackrel{\overset{\prod_X}{\longrightarrow}}{\underset{}{}}}} \mathbf{H} \stackrel{\overset{\Pi}{\longrightarrow}}{\stackrel{\overset{Disc}{\leftarrow}}{\stackrel{\overset{\Gamma}{\longrightarrow}}{\underset{CoDisc}{\leftarrow}}}} \infty Grpd \,. \end{displaymath} The bottom composite $\Gamma\circ \prod_X$ has an extra right adjoint by prop \ref{SliceOverAtomicObject}. The extra left adjoint $\Pi \circ \sum_X$ preserves the terminal object by prop. \ref{InCohesionAtomicObjectIsGeometricallyContractible}. \end{proof} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[atom]] (in a [[poset]]) \item [[atomic category]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The term \emph{small projective object} is used in section 5.5. of \begin{itemize}% \item [[Max Kelly]], \emph{Basic Concepts of Enriched Category Theory} (\href{http://www.tac.mta.ca/tac/reprints/articles/10/tr10.pdf}{pdf}) \end{itemize} Tiny objects in presheaf categories ([[Cauchy complete categories|Cauchy completion]]) are discussed in \begin{itemize}% \item [[Francis Borceux]] and D. Dejean, \emph{Cauchy completion in category theory} Cahiers Topologie G\'e{}om. Diff\'e{}rentielle Cat\'e{}goriques, 27:133--146, (1986) (\href{http://www.numdam.org/item?id=CTGDC_1986__27_2_133_0}{numdam}) \item David Yetter, \emph{On right adjoints to exponential functors} \href{https://www.sciencedirect.com/science/article/pii/0022404987900776}{link} \end{itemize} The term ``atomic object'' or rather ``a.t.o.m'' is suggested in \begin{itemize}% \item [[William Lawvere]], \emph{[[Toposes of laws of motion]]}, 1997 \end{itemize} [[!redirects small-projective object]] [[!redirects small-projective objects]] [[!redirects small-projective]] [[!redirects tiny objects]] [[!redirects tiny]] [[!redirects atomic object]] [[!redirects atomic objects]] \end{document}