\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological G-space} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{representation_theory}{}\paragraph*{{Representation theory}}\label{representation_theory} [[!include representation theory - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{equivariant_tietze_extension_theorem}{Equivariant Tietze extension theorem}\dotfill \pageref*{equivariant_tietze_extension_theorem} \linebreak \noindent\hyperlink{ModelStructureAndHomotopyTheory}{Model structure and homotopy theory}\dotfill \pageref*{ModelStructureAndHomotopyTheory} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{EuclideanGSpace}{Euclidean $G$-spaces}\dotfill \pageref*{EuclideanGSpace} \linebreak \noindent\hyperlink{representation_spheres}{Representation spheres}\dotfill \pageref*{representation_spheres} \linebreak \noindent\hyperlink{representation_tori}{Representation tori}\dotfill \pageref*{representation_tori} \linebreak \noindent\hyperlink{gcw_complexes}{G-CW complexes}\dotfill \pageref*{gcw_complexes} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} In the context of [[topology]], a \emph{topological $G$-space} (traditionally just \emph{$G$-space}, for short, if the context is clear) is a [[topological space]] equipped with an [[action]] of a [[topological group]] $G$ (often, but crucially not always, taken to be a [[finite group]]). The canonical [[homomorphisms]] of topological $G$-spaces are $G$-equivariant [[continuous functions]], and the canonical choice of [[homotopies]] between these are $G$-equivariant continuous homotopies (for trivial $G$-action on the interval). A $G$-[[equivariant Whitehead theorem|equivariant version]] of the [[Whitehead theorem]] says that on [[G-CW complexes]] these $G$-equivariant [[homotopy equivalences]] are equivalently those maps that induce [[weak homotopy equivalences]] on all [[fixed point]] spaces for all [[subgroups]] of $G$ (compact subgroups, if $G$ is allowed to be a [[Lie group]]). By [[Elmendorf's theorem]], this, in turn, is equivalent to the [[(∞,1)-presheaves]] over the [[orbit category]] of $G$. See below at \emph{\hyperlink{HomotopyTheory}{In topological spaces -- Homotopy theory}}. See (\hyperlink{HenriquesGepner07}{Henriques-Gepner 07}) for expression in terms of [[topological groupoids]]/[[orbispaces]]. In the context of [[stable homotopy theory]] the [[stabilization]] of $G$-spaces is given by [[spectra with G-action]]; these lead to [[equivariant stable homotopy theory]]. See there for more details. (But beware that in this context one considers the richer concept of [[G-spectra]], which have a [[forgetful functor]] to [[spectra with G-action]] but better homotopy theoretic properties. ) The union of this as $G$ is allowed to vary is the [[global equivariant stable homotopy theory]]. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{equivariant_tietze_extension_theorem}{}\subsubsection*{{Equivariant Tietze extension theorem}}\label{equivariant_tietze_extension_theorem} See at \emph{[[equivariant Tietze extension theorem]]} \hypertarget{ModelStructureAndHomotopyTheory}{}\subsubsection*{{Model structure and homotopy theory}}\label{ModelStructureAndHomotopyTheory} The standard [[homotopy theory]] on $G$-spaces used in [[equivariant homotopy theory]] considers [[weak equivalences]] which are [[weak homotopy equivalence]] on all (ordinary) [[fixed point]] spaces for all suitable [[subgroups]]. By [[Elmendorf's theorem]], this is equivalent to [[(∞,1)-presheaves]] over the [[orbit category]] of $G$. On the other hand there is also the standard homotopy theory of [[infinity-actions]], presented by the [[Borel model structure]], in this context also called the ``coarse'' or ``naive'' equivariant model structure (\hyperlink{Guillou}{Guillou}). \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} We discuss some classes of examples of [[G-spaces]]. \hypertarget{EuclideanGSpace}{}\subsubsection*{{Euclidean $G$-spaces}}\label{EuclideanGSpace} Let $V \in RO(G)$ be an [[orthogonal group|orthogonal]] [[linear representation]] of a [[finite group]] $G$ on a [[real vector space]] $V$. Then the underlying [[Euclidean space]] $\mathbb{R}^V$ inherits the [[mathematical structure|structure]] of a [[G-space]] $\backslash$begin\{xymatrix\} $\backslash$mathbb\{R\}{\tt \symbol{94}}V$\backslash$ar@(ul,ur){\tt \symbol{94}}G $\backslash$end\{xymatrix\} We may call this the \emph{[[Euclidean G-space]]} associated with the linear representation $V$. \hypertarget{representation_spheres}{}\subsubsection*{{Representation spheres}}\label{representation_spheres} Let $V \in RO(G)$ be an [[orthogonal group|orthogonal]] [[linear representation]] of a [[finite group]] $G$ on a [[real vector space]] $V$. Then the [[one-point compactification]] of the underlying [[Euclidean space]] $\mathbb{R}^V$ inherits the [[mathematical structure|structure]] of a [[G-space]] with the [[one-point compactification|point at infinity]] a [[fixed point]]. This is called the \emph{$V$-[[representation sphere]]} $\backslash$begin\{xymatrix\} S{\tt \symbol{94}}V$\backslash$ar@(ul,ur){\tt \symbol{94}}G $\backslash$ar@\{\}r|- \& $\backslash$big( $\backslash$mathbb\{R\}{\tt \symbol{94}}V$\backslash$ar@(ul,ur){\tt \symbol{94}}G$\backslash$big){\tt \symbol{94}}\{$\backslash$mathrm\{cpt\}\} $\backslash$end\{xymatrix\} \hypertarget{representation_tori}{}\subsubsection*{{Representation tori}}\label{representation_tori} Let $V \in RO(G)$ be an [[orthogonal group|orthogonal]] [[linear representation]] of a [[finite group]] $G$ on a [[real vector space]] $V$. If $G$ is the [[point group]] of a [[crystallographic group]] inside the [[Euclidean group]] \begin{displaymath} N \rtimes G \hookrightarrow Iso(\mathbb{R}^V) \end{displaymath} then the $G$-[[action]] on the Euclidean space $\mathbb{R}^V$ descends to the [[quotient]] by the [[action]] of the translational [[normal subgroup]] [[lattice in a vector space|lattice]] $N$ (\href{crystallographic+group#InducedPointGroupActionOnTorus}{this Prop.}). The resulting $G$-space is an [[n-torus]] with $G$-action, which might be called the \emph{[[representation torus]]} of $V$ $\backslash$begin\{xymatrix\} $\backslash$mathbb\{R\}{\tt \symbol{94}}V$\backslash$ar@(ul,ur){\tt \symbol{94}}G $\backslash$ar@\{\}r|- \& $\backslash$big( $\backslash$mathbb\{R\}{\tt \symbol{94}}V$\backslash$ar@(ul,ur){\tt \symbol{94}}G$\backslash$big)/N $\backslash$end\{xymatrix\} \begin{quote}% graphics grabbed from \href{equivariant+Hopf+degree+theorem#SatiSchreiber19}{SS 19} \end{quote} \hypertarget{gcw_complexes}{}\subsubsection*{{G-CW complexes}}\label{gcw_complexes} See at \emph{[[G-CW complex]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[G-set]] \item [[fixed point space]] \item [[cyclotomic space]] \end{itemize} [[!include equivariant homotopy theory -- table]] See also \begin{itemize}% \item \emph{[[equivariant stable homotopy theory]]} \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Glen Bredon]], chapter II of \emph{[[Introduction to compact transformation groups]]}, Academic Press 1972 \item [[Bert Guillou]], \emph{A short note on models for equivariant homotopy theory} (\href{http://www.math.uiuc.edu/~bertg/EquivModels.pdf}{pdf}) \item [[André Henriques]], [[David Gepner]], \emph{Homotopy Theory of Orbispaces} (\href{http://arxiv.org/abs/math/0701916}{arXiv:math/0701916}) \end{itemize} See also the references at \emph{[[equivariant homotopy theory]]}. [[!redirects topological G-spaces]] [[!redirects topological G-spaces]] [[!redirects G-space]] [[!redirects G-spaces]] \end{document}