\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological K-theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{Definition}{Definition}\dotfill \pageref*{Definition} \linebreak \noindent\hyperlink{the_kgroup}{The K-group}\dotfill \pageref*{the_kgroup} \linebreak \noindent\hyperlink{ReducedKGroup}{The reduced K-group}\dotfill \pageref*{ReducedKGroup} \linebreak \noindent\hyperlink{TheRelativeKGroup}{The relative K-group}\dotfill \pageref*{TheRelativeKGroup} \linebreak \noindent\hyperlink{TheGradedKGroups}{The graded K-groups}\dotfill \pageref*{TheGradedKGroups} \linebreak \noindent\hyperlink{ForNonCompactSpaces}{For non-compact spaces}\dotfill \pageref*{ForNonCompactSpaces} \linebreak \noindent\hyperlink{Examples}{Examples}\dotfill \pageref*{Examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{homotopy_invariance}{Homotopy invariance}\dotfill \pageref*{homotopy_invariance} \linebreak \noindent\hyperlink{ExactSequences}{Exact sequences}\dotfill \pageref*{ExactSequences} \linebreak \noindent\hyperlink{ExternalProducts}{External product}\dotfill \pageref*{ExternalProducts} \linebreak \noindent\hyperlink{fundamental_product_theorem}{Fundamental product theorem}\dotfill \pageref*{fundamental_product_theorem} \linebreak \noindent\hyperlink{BottPeriodicities}{Bott periodicity}\dotfill \pageref*{BottPeriodicities} \linebreak \noindent\hyperlink{GradedRingStructure}{Graded-commutative ring structure}\dotfill \pageref*{GradedRingStructure} \linebreak \noindent\hyperlink{ClassifyingSpace}{Classifying space}\dotfill \pageref*{ClassifyingSpace} \linebreak \noindent\hyperlink{of_noncompact_spaces}{Of non-compact spaces}\dotfill \pageref*{of_noncompact_spaces} \linebreak \noindent\hyperlink{AsAGeneralizedCohomologyTheory}{As a generalized cohomology theory}\dotfill \pageref*{AsAGeneralizedCohomologyTheory} \linebreak \noindent\hyperlink{ComplexOrientationAndFormalGroupLaw}{Complex orientation and formal group law}\dotfill \pageref*{ComplexOrientationAndFormalGroupLaw} \linebreak \noindent\hyperlink{spectrum}{Spectrum}\dotfill \pageref*{spectrum} \linebreak \noindent\hyperlink{ring_spectrum}{Ring spectrum}\dotfill \pageref*{ring_spectrum} \linebreak \noindent\hyperlink{chromatic_filtration}{Chromatic filtration}\dotfill \pageref*{chromatic_filtration} \linebreak \noindent\hyperlink{as_the_shape_of_the_smooth_ktheory_spectrum}{As the shape of the smooth K-theory spectrum}\dotfill \pageref*{as_the_shape_of_the_smooth_ktheory_spectrum} \linebreak \noindent\hyperlink{RelationToAlgebraicKTheory}{Relation to algebraic K-theory}\dotfill \pageref*{RelationToAlgebraicKTheory} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{for_noncompact_spaces_2}{For non-compact spaces}\dotfill \pageref*{for_noncompact_spaces_2} \linebreak \noindent\hyperlink{dbrane_charge}{D-brane charge}\dotfill \pageref*{dbrane_charge} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} What is called \emph{topological} [[K-theory]] is a collection of [[generalized (Eilenberg-Steenrod) cohomology]] theories whose cocycles in degree 0 on a [[topological space]] $X$ may be represented by pairs of [[vector bundles]], real or complex ones, on $X$ modulo a certain equivalence relation. The following is the quick idea. For a detailed introduction see \emph{[[Introduction to Topological K-Theory]]}. First, recall that for $k$ a [[field]] then a $k$-[[vector bundle]] over a [[topological space]] $X$ is a map $V \to X$ whose [[fibers]] are [[vector spaces]] which vary over $X$ in a controlled way. Explicitly this means that there exits an [[open cover]] $\{U_i \to X\}$ of $X$, a [[natural number]] $n \in \mathbb{N}$ (the \emph{[[rank of a vector bundle|rank]]} of the vector bundle) and a [[homeomorphism]] $U_i \times k^n \to V|_{U_i}$ over $U_i$ which is fiberwise a $k$-[[linear map]]. Vector bundles are of central interest in large parts of [[mathematics]] and [[physics]], for instance in [[Chern-Weil theory]] and [[cobordism theory]]. But the collection $Vect(X)_{/\sim}$ of [[isomorphism classes]] of vector bundles over a given space is in general hard to analyze. One reason for this is that these are classified in degree-1 \emph{[[nonabelian cohomology]]} with [[coefficients]] in the ([[nonabelian group|nonabelian]]) [[general linear group]] $GL(n,k)$. K-theory may roughly be thought of as the result of forcing vector bundles to be classified by an abelian [[cohomology theory]]. To that end, observe that all natural operations on [[vector spaces]] generalize to vector bundles by applying them [[fiber]]-wise. Notably there is the fiberwise [[direct sum of vector bundles]], also called the \emph{[[nLab:Whitney sum]]} operation. This operation gives the set $Vect(X)_{/\sim}$ of [[nLab:isomorphism classes]] of vector bundles the structure of an [[semi-group]] ([[monoid]]) $(Vect(X)_{/\sim},\oplus)$. Now as under direct sum the [[nLab:dimension]] of vector spaces adds, similarly under [[nLab:direct sum of vector bundles]] their [[nLab:rank]] adds. Hence in analogy to how one passes from the additive [[semi-group]] ([[monoid]]) of [[natural numbers]] to the addtitive [[group]] of [[integers]] by adjoining formal additive inverses, so one may adjoin formal additive inverses to $(Vect(X)_{/\sim},\oplus)$. By a general prescription (``[[Grothendieck group of a commutative monoid]]'') this is achieved by first passing to the larger class of [[pairs]] $(V_+,V_-)$ of vector bundles (``[[virtual vector bundles]]''), and then [[quotient|quotienting]] out the [[equivalence relation]] given by \begin{displaymath} (V_+, V_-) \sim (V_+ \oplus W , V_- \oplus W) \end{displaymath} for all $W \in Vect(X)_{/\sim}$. The resulting set of [[equivalence classes]] is an [[abelian group]] with group operation given on representatives by \begin{displaymath} [V_+, V_-] \oplus [V'_+, V'_-] \coloneqq (V_+ \oplus V'_+, V_- \oplus V'_-) \end{displaymath} and with the [[inverse]] of $[V_+,V_-]$ given by \begin{displaymath} -[V_+, V_-] = [V_-, V_+] \,. \end{displaymath} This [[abelian group]] obtained from $(Vect(X)_{/\sim}, \oplus)$ is denoted $K(X)$ and often called \emph{the K-theory} of the space $X$. Here the letter ``K'' (due to [[Alexander Grothendieck]]) originates as a shorthand for the German word \emph{Klasse}, referring to the above process of forming [[equivalence classes]] of ([[isomorphism classes]]) of vector bundles. This simple construction turns out to yield remarkably useful groups of [[homotopy]] [[invariants]]. A variety of deep facts in [[algebraic topology]] have fairly elementary proofs in terms of topolgical K-theory, for instance the [[Hopf invariant one]] problem (\hyperlink{AdamsAtiyah66}{Adams-Atiyah 66}). One defines the ``higher'' K-groups of a topological space to be those of its higher [[reduced suspensions]] \begin{displaymath} K^{-n}(X) = K(\Sigma^n X) \,. \end{displaymath} The assignment $X \mapsto K^\bullet(X)$ turns out to share many properties of the assignment of [[ordinary cohomology]] groups $X \mapsto H^n(X,\mathbb{Z})$. One says that topological K-theory is a [[generalized (Eilenberg-Steenrod) cohomology]] theory. As such it is [[Brown representability theorem|represented]] by a [[spectrum]]. For $k = \mathbb{C}$ this is called [[KU]], for $k = \mathbb{R}$ this is called [[KO]]. (There is also the unification of both in [[KR]]-theory.) One of the basic facts about topological K-theory, rather unexpected from the definition, is that these higher K-groups repeat \emph{periodically} in the degree $n$. For $k = \mathbb{R}$ the periodicity is 8, for $k = \mathbb{C}$ it is 2. This is called \emph{[[Bott periodicity]]}. It turns out that an important source of [[virtual vector bundles]] representing classes in [[K-theory]] are [[index bundles]]: Given a [[Riemannian manifold|Riemannian]] [[spin structure|spin]] [[manifold]] $B$, then there is a [[vector bundle]] $S \to B$ called the \emph{[[spin bundle]]} of $B$, which carries a [[differential operator]], called the [[Dirac operator]] $D$. The [[index of a Dirac operator]] is the formal difference of its [[kernel]] by its [[cokernel]] $[ker D, coker D]$. Now given a continuous family $D_x$ of Dirac operators/Fredholm operators, parameterized by some topological space $X$, then these indices combine to a class in $K(X)$. It is via this construction that topological K-theory connects to [[spin geometry]] (see e.g. [[Karoubi K-theory]]) and [[index theory]]. As the terminology indicates, both [[spin geometry]] and [[Dirac operator]] originate in [[physics]]. Accordingly, K-theory plays a central role in various areas of [[mathematical physics]], for instance in the theory of [[geometric quantization]] (``[[spin{\tt \symbol{94}}c quantization]]'') in the theory of [[D-branes]] (where it models [[D-brane charge]] and [[RR-fields]]) and in the theory of [[Kaluza-Klein compactification]] via [[spectral triples]] (see below). All these geometric constructions have an [[operator algebra|operator algebraic]] incarnation: by the topological [[Serre-Swan theorem]] then [[vector bundles]] of finite rank are equivalently [[modules]] over the [[C\emph{-algebra]] of [[continuous functions]] on the base space. Using this relation one may express K-theory classes entirely operator algebraically, this is called \emph{[[operator K-theory]]}. Now [[Dirac operators]] are generalized to [[Fredholm operators]].} There are more [[C\emph{-algebras]] than arising as [[algebras of functions]] of [[topological space]], namely non-commutative C}-algebras. One may think of these as defining [[non-commutative geometry]], but the definition of [[operator K-theory]] immediately generalizes to this situation (see also at \emph{[[KK-theory]]}). While the [[C\emph{-algebra]] of a [[Riemannian manifold|Riemannian]] [[spin structure|spin]] [[manifold]] remembers only the underlying [[topological space]], one may algebraically encode the [[smooth structure]] and [[Riemannian structure]] by passing from [[Fredholm modules]] to ``[[spectral triples]]''. This may for instance be used to algebraically encode the spin physics underlying the [[standard model of particle physics]] and [[operator K-theory]] plays a crucial role in this.} \hypertarget{Definition}{}\subsection*{{Definition}}\label{Definition} The following discussion of topological K-theory in terms of [[point-set topology]]. For more abstract perspectives see for instance \emph{[[Snaith's theorem]]} and other pointers at \emph{[[K-theory]]}. Assumed background for the following is the content of \begin{itemize}% \item \emph{[[topological vector bundles]]} \item \emph{[[Grothendieck group of a commutative monoid]]} \item \emph{[[pointed topological spaces]]} \end{itemize} Throughout, let $k$ be a [[topological field]], usually the [[real numbers]] $\mathbb{R}$ or of [[complex numbers]] $\mathbb{C}$. In the following we take \begin{enumerate}% \item \emph{[[vector space]]} to mean \emph{[[finite dimensional vector space]]} over $k$. \item \emph{[[vector bundle]]} to mean \emph{[[topological vector bundle]] over $k$ of finite [[rank of a vector bundle|rank]]}. \end{enumerate} We say \emph{[[monoid]]} for \emph{[[semigroup]] with [[unitality|unit]]}. For the most part below we will invoke the assumption that the base [[topological space]] $X$ is a [[compact Hausdorff space]]. Because then the following statement holds, which is crucial in some places: \begin{lemma} \label{DirectSumHasInverseUpToTrivialBundle}\hypertarget{DirectSumHasInverseUpToTrivialBundle}{} \textbf{(over [[compact Hausdorff space]] every [[topological vector bundle]] is [[direct sum of vector bundles|direct summand]] of a [[trivial vector bundle]])} For every [[topological vector bundle]] $E \to X$ over the [[compact Hausdorff space]] $X$ there exists a [[topological vector bundle]] $\tilde E \to X$ such that the [[direct sum of vector bundles]] \begin{displaymath} E \oplus_X \tilde E \simeq X \times \mathbb{R}^{n} \end{displaymath} is a [[trivial vector bundle]]. \end{lemma} For \textbf{proof} see \href{topological+vector+bundle#TopologicalVectorbundleOverCompactHausdorffSpaceIsDirectSummandOfTrivialBundle}{this prop.} at \emph{[[topological vector bundle]]}. \hypertarget{the_kgroup}{}\subsubsection*{{The K-group}}\label{the_kgroup} The starting point is the simple observation that the operation of [[direct sum of vector bundles]] yields a [[monoid]] structure ([[semi-group]] with [[unitality|unit]]) on [[isomorphism classes]] of [[topological vector bundles]], which however is lacking [[inverse elements]] and hence is not an actual [[group]]. \begin{defn} \label{SemigroupOfIsomorphismClassesOfTopologicalVectorBundlesOnX}\hypertarget{SemigroupOfIsomorphismClassesOfTopologicalVectorBundlesOnX}{} \textbf{([[monoid]] of [[isomorphism classes]] of [[topological vector bundles]] on $X$)} For $X$ a [[topological space]], write $Vect(X)_{/\sim}$ for the [[set]] of [[isomorphism classes]] of [[topological vector bundles]] over $X$. The operation of [[direct sum of vector bundles]] \begin{displaymath} (-)\oplus_X (-) \;\colon\; Vect(X) \times Vect(X) \longrightarrow Vect(X) \end{displaymath} descends to this [[quotient]] by [[isomorphism]] \begin{displaymath} [E_1] + [E_2] \;\coloneqq\; [E_1 \oplus_X E_2] \end{displaymath} to yield the structure of a [[monoid]] ([[semi-group]] with [[unitality|unit]]) \begin{displaymath} \left( Vect(X)_{/\sim}, + \right) \,. \end{displaymath} \end{defn} \begin{remark} \label{}\hypertarget{}{} The operation of [[direct sum of vector bundles]] on [[isomorphism classes]] in def. \ref{SemigroupOfIsomorphismClassesOfTopologicalVectorBundlesOnX} is indeed not a [[group]]: Let $x \in X$ be a chosen point of $x$ and write \begin{displaymath} rk_x \;\colon\; Vect(X)_{/\sim} \longrightarrow \mathbb{N} \end{displaymath} for the [[function]] which takes a [[topological vector bundle]] to the [[rank of a vector bundle|rank]] over the [[connected component]] of the point $x$. Then under [[direct sum of vector bundles]] the rank is additive \begin{displaymath} rk_x(E_1 \oplus_X E_2) \,=\, rk_x(E_1) + rk_x(E_1) \,. \end{displaymath} Now since the [[natural numbers]] under [[addition]] are just a [[monoid]] ([[semi-group]] with [[unitality|unit]]), with no element except zero having an [[inverse element]] under the additive operation, it follows immediately that a necessary condition for the [[isomorphism class]] of a [[topological vector bundle]] to be invertible under [[direct sum of vector bundles]] is that its [[rank of a vector bundle]] be zero. But there is only one such class of vector bundles, in fact there is only one such vector bundle, namely the unique rank-zero bundle $X \times k^0$, necessarily a [[trivial vector bundle]]. Now for the [[monoid]] of [[natural numbers]] $(\mathbb{N},+)$ it is a time honored fact that it is interesting and useful to rectify its failure of being a [[group]] by [[universal construction|universally]] forcing it to become one. This is a process called \emph{[[group completion]]} and the group completion of the natural numbers is the additive group of [[integers]] $(\mathbb{Z},+)$. The idea is hence to apply group completion also to the monoid $(Vect(X)_{/\sim}, +)$, and so that the [[rank of a vector bundle|rank]] operation above becomes a [[homomorphism]] of [[abelian groups]]. \end{remark} An explicit construction of [[group completion]] of a [[commutative monoid]] is called the \emph{[[Grothendieck group of a commutative monoid]]}. \begin{defn} \label{KGroupByGrothendieckGroup}\hypertarget{KGroupByGrothendieckGroup}{} \textbf{(K-group as the [[Grothendieck group of a commutative monoid|Grothendieck group]] of [[isomorphism classes]] of [[topological vector bundles]])} For $X$ a [[topological space]], write \begin{displaymath} K(X) \;\coloneqq\; K(Vect(X)_{/\sim}, +) \end{displaymath} for the [[Grothendieck group of a commutative monoid|Grothendieck group]] of the [[commutative monoid]] (abelian [[semi-group]] with [[unitality|unit]]) of [[isomorphism classes]] of [[topological vector bundles]] on $X$ from def. \ref{SemigroupOfIsomorphismClassesOfTopologicalVectorBundlesOnX}. This means that $K(X)$ is the [[group]] whose elements are [[equivalence classes]] of pairs \begin{displaymath} ([E_+], [E_-]) \; \in Vect(X)_{/\sim} \times Vect(X)_{/\sim} \end{displaymath} of [[isomorphism classes]] of [[topological vector bundles]] on $X$, with respect to the [[equivalence relation]] \begin{displaymath} \big( \left( [E_+], [E_-] \right) \;\sim\; \left( [F_+, F_-] \right) \big) \;\Leftrightarrow\; \left( \underset{[G],[H] \in Vect(X)_{/\sim}}{\exists} \left( \left([E_+ \oplus_X G] , [E_- \oplus_X G]\right) \,=\, \left([F_+ \oplus_X H] , [F_- \oplus_X H]\right) \right) \right) \,. \end{displaymath} Here a pair $([E_+], [E_-])$ is also called a \emph{[[virtual vector bundle]]}, and its equivalence class under the above equivalence relation is also denoted \begin{displaymath} [E_+] - [E_-] \;\;\in K(X) \,. \end{displaymath} If $X$ is a [[pointed topological space]], hence equipped with a choice of point $x \in X$ then the difference of [[rank of a vector bundle|ranks]] $rk_x(-)$ of the representing vector bundles over the [[connected component]] of $x \in X$ \begin{displaymath} rk_x( [E_+] - [E_-] ) \;\coloneqq\; rk_x(E_+) - rk_x(E_-) \in \mathbb{Z} \end{displaymath} is called the \emph{virtual rank} of the virtual vector bundle. \end{defn} \begin{example} \label{KGroupOfThePoint}\hypertarget{KGroupOfThePoint}{} \textbf{(K-group of the point is the [[integers]])} Let $X = \ast$ be the [[point]]. Then a [[topological vector bundle]] on $X$ is just a [[vector space]] \begin{displaymath} Vect(\ast) \simeq Vect \end{displaymath} and an isomorphism of vector bundles is just a bijective [[linear map]]. Since [[finite dimensional vector spaces]] are [[isomorphism|isomorphic]] precisely if they have the same [[dimension]], the [[monoid]] ([[semi-group]] with [[unitality|unit]]) of isomorphism classes of vector bundles over the point (def. \ref{SemigroupOfIsomorphismClassesOfTopologicalVectorBundlesOnX}) is the [[natural numbers]]: \begin{displaymath} \left( Vect(\ast)_{/\sim}, + \right) \;\simeq\; \left( \mathbb{N}, + \right) \,. \end{displaymath} Accordingly the K-group of the point is the [[Grothendieck group of a commutative monoid|Grothendieck group]] of the [[natural numbers]], which is the additive group of [[integers]] (\href{Grothendieck+group+of+a+commutative+monoid#GrothendieckGroupOfNaturalNumbersUnderAdditionIsTheIntegers}{this example}): \begin{displaymath} K(\ast) \simeq (\mathbb{Z}, +) \end{displaymath} and this identification is the assignment of \emph{virtual rank} (def. \ref{KGroupByGrothendieckGroup}). \end{example} \begin{prop} \label{OnCompactHausdorffVirtualVectorBundlesAreFormalDifferentcesWithATrivialBundle}\hypertarget{OnCompactHausdorffVirtualVectorBundlesAreFormalDifferentcesWithATrivialBundle}{} \textbf{(on [[compact Hausdorff spaces]] all [[virtual vector bundles]] are formal difference by a [[trivial vector bundle]])} If $X$ is a [[compact Hausdorff space]], then every [[virtual vector bundle]] on $X$ (def. \ref{KGroupByGrothendieckGroup}) is of the form \begin{displaymath} [E] - [X \times k^n] \end{displaymath} (i.e. with negative component represented by a [[trivial vector bundle]]). \end{prop} \begin{proof} For $X$ compact Hausdorff then lemma \ref{DirectSumHasInverseUpToTrivialBundle} implies that for every [[topological vector bundle]] $E_-$ there exists a topological vector bundle $\tilde E_-$ with $E_- \oplus_X \tilde E_- \simeq X \times k^n$, and hence \begin{displaymath} [E_+] - [E_-] = \underset{[E]}{\underbrace{[E_+] + [\tilde E_-]}} - \underset{[X \times k^n]}{\underbrace{ \left( [E_-] + [\tilde E_-] \right) } } = [E] - [X \times k^n] \,. \end{displaymath} \end{proof} \begin{remark} \label{KTheoryRing}\hypertarget{KTheoryRing}{} \textbf{([[commutative ring]] structure on $K(X)$ from [[tensor product of vector bundles]])} Also the operation of [[tensor product of vector bundles]] over $X$ descends to [[isomorphism classes]] of [[topological vector bundles]] and makes $(Vect(X)_{\sim}, \oplus, \otimes )$ a [[semi-ring]] ([[rig]]). (This is the shadow under passing to isomorphism classes of the fact that the [[category]] $Vect(X)$ is a [[distributive monoidal category]] under [[tensor product of vector bundles]].) This multiplicative structure passes to the K-group (def. \ref{KGroupByGrothendieckGroup}) by the formula \begin{displaymath} [E_+, E_-] \cdot [F_+, F_-] \;\coloneqq\; [ (E_+ \otimes_X F_+) \oplus_X (E_- \otimes_X F_-) \,,\, (E_+ \otimes_X F_-) \oplus_X (E_- \otimes_X F_+) ] \,. \end{displaymath} Accordingly the ring $(K(X), +,\cdot)$ is also called the \emph{K-theory ring} of $X$. \end{remark} \begin{remark} \label{FunctorialityOfKGroup}\hypertarget{FunctorialityOfKGroup}{} \textbf{([[functor|functoriality]] of the K-theory ring assignment)} Let $f \colon X \longrightarrow Y$ be a [[continuous function]] between [[topological spaces]]. The operation of [[pullback of vector bundles]] \begin{displaymath} f^\ast \;\colon\; Vect(Y) \longrightarrow Vect(X) \end{displaymath} is compatible with [[direct sum of vector bundles]] as well as with [[tensor product of vector bundles]] and hence descends to a [[homomorphism]] of [[commutative rings]] \begin{displaymath} f^\ast \;\colon\; K(Y) \longrightarrow K(X) \end{displaymath} between the K-theory rings from remark \ref{KTheoryRing}. Moreover, for \begin{displaymath} X \overset{f}{\longrightarrow} Y \overset{g}{\longrightarrow} Z \end{displaymath} two consecutive [[continuous functions]], then the consecutive pullback of the vector bundle is isomorphic to the pullback along the composite map, which means that on K-group pullback preserves composition \begin{displaymath} (g \circ f)^\ast = f^\ast \circ g^\ast \;\colon\; K(Z) \longrightarrow K(X) \,. \end{displaymath} Finally, of course pullback along an [[identity function]] $id_X \colon X \to X$ is the identity group homomorphism. In summary this says that the assignment of K-groups to topological spaces is a [[functor]] \begin{displaymath} K(-) \;\colon\; Top^{op} \longrightarrow CRing \end{displaymath} from the [[opposite category]] of the [[category]] [[Top]] of [[topological space]] to the category [[CRing]] of [[commutative rings]]. \end{remark} We consider next the image of plain vector bundles in [[virtual vector bundles]]: \begin{prop} \label{StableEquivalenceOfVectorBundles}\hypertarget{StableEquivalenceOfVectorBundles}{} \textbf{([[stable equivalence of vector bundles]])} Let $X$ be a [[topological space]]. Define an [[equivalence relation]] $\sim_{stable}$ on [[topological vector bundles]] over $X$ by declaring two vector bundles $E_1 E_2 \in Vect(X)$ to be equivalent if there exists a [[trivial vector bundle]] $X \times k^n$ of some [[rank]] $n$ such that after [[tensor product of vector bundles]] with this [[trivial vector bundle]], both bundles become [[isomorphism|isomorphic]] \begin{displaymath} \left( E_1 \sim_{stable} E_2 \right) \;\Leftrightarrow\; \underset{n \in \mathbb{N}}{\exists} \left( E_1 \otimes_X (X \times k^n) \;\simeq\; E_2 \otimes_X (X \times k^n) \right) \,. \end{displaymath} If $E_1 \sim_{stable} E_2$ we say that $E_1$ and $E_2$ are \emph{stably equivalent vector bundles}. \end{prop} \begin{prop} \label{}\hypertarget{}{} \textbf{([[image]] of plain [[vector bundles]] in [[virtual vector bundles]])} Let $X$ be a [[topological space]]. There is a [[homomorphism]] of [[semigroups]] \begin{displaymath} \itexarray{ Vect(X)_{/\sim} & \longrightarrow & K(X) \\ [E_1] &\overset{\phantom{AAA}}{\mapsto}& \left( [E_1], [X \times k^0] \right) } \end{displaymath} from the [[isomorphism classes]] of [[topological vector bundles]] (def. \ref{SemigroupOfIsomorphismClassesOfTopologicalVectorBundlesOnX}) to the K-group of $X$ (def. \ref{KGroupByGrothendieckGroup} ). If $X$ is a [[compact Hausdorff space]], then the [[image]] of this function is the [[stable equivalence classes of vector bundles]] (def. \ref{StableEquivalenceOfVectorBundles}), hence this function factors as an [[epimorphism]] onto $Vect(X)_{/\sim_{stable}}$ followed by an [[injection]] \begin{displaymath} Vect(X)_{/\sim} \longrightarrow Vect(X)_{/\sim_{stable}} \hookrightarrow K(X) \,. \end{displaymath} \end{prop} \begin{proof} The homomorphism of [[commutative monoids]] $Vect(X)_{/\sim} \to K(X)$ is the one given by the [[universal property]] of the [[Grothendieck group of a commutative monoid|Grothendieck group]] construction (\href{Grothendieck+group+of+a+commutative+monoid#UniversalProperty}{this prop.}). By definition of the [[Grothendieck group of a commutative monoid|Grothendieck group]] (\href{Grothendieck+group+of+a+commutative+monoid#GrothendieckGroupViaQuotientOfCartesianProduct}{this def.}), two elements of the form \begin{displaymath} \left( [E_1], [X \times k^0] \right) \phantom{AA} \text{and} \phantom{AA} \left( [E_2], [X \times k^0] \right) \end{displaymath} are equivalent precisely if there exist vector bundles $F_1$ and $F_2$ such that \begin{displaymath} \left( [ E_1 \oplus_X F_1 ], [ F_1] \right) \;=\; \left( [E_2 \oplus_X F_2], [F_2] \right) \,. \end{displaymath} First of all this means that $F_1 \simeq F_2$, hence is equivalent to the existence of a vector bundle $F$ such that \begin{displaymath} [E_1 \oplus F] \;=\; [E_2 \oplus F] \,. \end{displaymath} Now, by the assumption that $X$ is compact Hausdorff, lemma \ref{DirectSumHasInverseUpToTrivialBundle} implies that there exists a vector bundle $\tilde F$ such that \begin{displaymath} F \oplus_X \tilde F \simeq X \times k^n \end{displaymath} is the [[trivial vector bundle]] of some [[rank of a vector bundle|rank]] $n \in \mathbb{N}$. This means that the above is equivalent already to the existence of an $n \in \mathbb{N}$ such that \begin{displaymath} [E_1 \oplus (X \times k^n)] \;=\; [E_2 \oplus (X \times k^n)] \,. \end{displaymath} This is the definition of stable equivalence from def. \ref{StableEquivalenceOfVectorBundles}. \end{proof} \hypertarget{ReducedKGroup}{}\subsubsection*{{The reduced K-group}}\label{ReducedKGroup} \begin{defn} \label{KernelReducedKGroup}\hypertarget{KernelReducedKGroup}{} \textbf{([[reduced K-theory]])} Let $X$ be a [[pointed topological space]], hence a [[topological space]] equipped with a choice of point $x \in X$, hence with a [[continuous function]] $const_x \colon \ast \to X$ from the [[point space]]. By the functoriality of the K-groups (remark \ref{FunctorialityOfKGroup}) this induces a group homomorphism \begin{displaymath} const_x^\ast \;\colon\; K(X) \longrightarrow K(\ast) \end{displaymath} given by restricting a virtual vector bundle to the basepoint. The [[kernel]] of this map is called the \emph{[[reduced K-theory]] group} of $(X,x)$, denoted \begin{displaymath} \tilde K(X) \;\coloneqq\; ker(const_x^\ast) \,. \end{displaymath} \end{defn} \begin{example} \label{ExpressingPlainKTHeoryGroupInTermsOfReducedKTheoryGroup}\hypertarget{ExpressingPlainKTHeoryGroupInTermsOfReducedKTheoryGroup}{} \textbf{(expressing plain K-groups as reduced K-groups)} Let $X$ be a [[topological space]]. Write $X_* \coloneqq X \sqcup \ast$ for its [[disjoint union space]] with the [[point space]], and regard this as a [[pointed topological space]] with base point the adjoined point. Then the reduced K-theory of $X_+$ is the plain K-theory of $X$: \begin{displaymath} \tilde K(X_+) \simeq K(X) \,. \end{displaymath} Because every [[topological vector bundle]] on $X \sqcup \ast$ is the [[direct sum of vector bundles]] of one that has [[rank of a vector bundle|rank]] zero on $\ast$ and one that has rank zero on $X$ (\href{direct+sum+of+vector+bundles#DirectSumOnDisjointUnionSpace}{this example.}) \end{example} \begin{remark} \label{RestrictionInKTheoryToPointComputesVirtualRank}\hypertarget{RestrictionInKTheoryToPointComputesVirtualRank}{} \textbf{(restriction in K-theory to the point computes virtual rank)} By example \ref{KGroupOfThePoint} we have that \begin{enumerate}% \item $K(\ast) \simeq \mathbb{Z}$; \item under this identification the function $const_x^\ast$ is the assignment of \emph{virtual rank} \begin{displaymath} \itexarray{ K(X) &\overset{const_x^\ast}{\longrightarrow}& K(\ast) &\overset{\simeq}{\to}& \mathbb{Z} \\ [E]- [F] &\overset{\phantom{AAA}}{\mapsto}& [E_x] - [F_x] &\mapsto& rk_x(E) - rk_x(F) } \end{displaymath} \end{enumerate} \end{remark} \begin{defn} \label{VanishingAtInfinity}\hypertarget{VanishingAtInfinity}{} \textbf{([[vanishing at infinity]])} If $X$ is a [[locally compact topological space|locally compact]] [[Hausdorff space]], then a [[continuous function]] \begin{displaymath} f \;\colon\; X \longrightarrow \mathbb{R} \end{displaymath} is said to [[vanishing at infinity|vanish at infinity]] if it [[extension|extends]] by zero to the [[one-point compactification]] $X^* \coloneqq (X \sqcup \{\infty\}, \tau_{cpt})$ \begin{displaymath} \itexarray{ X &\overset{f}{\longrightarrow}& \mathbb{R} \\ \downarrow & \nearrow_{\mathrlap{ x \mapsto \left\{ \itexarray{ f(x) &\vert& x \in X \\ 0 &\vert& x = \infty } \right. }} \\ X^\ast } \end{displaymath} Now the [[one-point compactification]] $X^\ast$ is a [[compact Hausdorff space]] (by \href{one-point+compactification#OnePointExtensionIsCompact}{this prop.} and \href{one-point+compactification#HausdorffOnePointCompactification}{this prop.}) and canonically a [[pointed topological space]] with basepoint the element $\infty \in X^\ast$. Moreover, every [[compact Hausdorff space]] $X$ arises this way as the [[one-point compactification]] of the [[complement]] [[subspace]] of any of its points: $X \simeq (X \setminus \{x\})^\ast$ (by \href{one-point+compactification#CompactHausdorffSpaceIsCompactificationOfComplementOfAnyPoint}{this remark}). Since [[open subspaces of compact Hausdorff spaces are locally compact]], this complement [[subspace]] $X \setminus \{x\} \subset X$ is a [[locally compact topological space|locally compact]] [[Hausdorff space]], and every locally compact Hausdorff spaces arises this way (by \href{one-point+compactification#InclusionIntoOnePointExtensionIsOpenEmbedding}{this prop.}). Therefore one may think of the [[reduced K-groups]] $\tilde K(X)$ (def. \ref{KernelReducedKGroup}) of compact Hausdorff spaces as the those K-groups of locally compact Hausdorff spaces which ``vanish at infinity''. \end{defn} \begin{remark} \label{FunctorialityOfReducedKGroups}\hypertarget{FunctorialityOfReducedKGroups}{} \textbf{([[functor|functoriality]] of the reduced K-groups)} By the functoriality of the unreduced K-groups (remark \ref{FunctorialityOfKGroup}) on (the [[opposite category|opposite]] of) the [[category]] [[Top]] of all topological spaces, the reduced K-groups (def. \ref{KernelReducedKGroup}) becomes functorial on the category $Top^{\ast/}$ of \emph{[[pointed topological spaces]]} (whose [[morphisms]] are the [[continuous functions]] that preserve the base-point): \begin{displaymath} \tilde K \;\colon\; (Top^{\ast/})^{op} \longrightarrow Ab \,. \end{displaymath} This follows by the functoriality of the [[kernel]] construction (which in turn follows by the [[universal property]] of the kernel): For $(X,x)$ and $(Y,y)$ [[pointed topological spaces]] and $f \colon X \longrightarrow Y$ a continuous function which preserves basepoints $f(x) = y$ then \begin{displaymath} \itexarray{ ker(const_x^\ast) &\longrightarrow& K(X) &\overset{const_x^\ast}{\longrightarrow}& K(\{x\}) \\ \uparrow^{\mathrlap{\exists !}} && \uparrow^{\mathrlap{f^\ast}} && \uparrow^{\mathrlap{f^\ast}} \\ ker(const_y^\ast) &\longrightarrow& K(Y) &\overset{const_x^\ast}{\longrightarrow}& K(\{y\}) } \,. \end{displaymath} \end{remark} \begin{prop} \label{KGrupDirectSummandReducedKGroup}\hypertarget{KGrupDirectSummandReducedKGroup}{} \textbf{(over [[compact Hausdorff spaces]] $\tilde K(X)$ is a [[direct sum|direct summand]] of $K(X)$)} If $(X,x)$ is a [[pointed topological space|pointed]] [[compact Hausdorff space]] then the defining [[short exact sequence]] of [[reduced K-theory]] groups (def. \ref{KernelReducedKGroup}) \begin{displaymath} 0 \to \tilde K(X) \overset{\phantom{AAA}}{\hookrightarrow} K(X) \overset{const_x^\ast}{\longrightarrow} K(\ast) \simeq \mathbb{Z} \to 0 \end{displaymath} [[split exact sequence|splits]] and thus yields an [[isomorphism]], which is given by \begin{displaymath} \itexarray{ K(X) &\overset{\phantom{A}\simeq \phantom{A}}{\longrightarrow}& \tilde K(X) \oplus \mathbb{Z} \\ [E] - [X \times k^n] &\overset{\phantom{AAA}}{\mapsto}& ([E], rk_x(E) - n) } \,. \end{displaymath} Here on the left we are using prop. \ref{OnCompactHausdorffVirtualVectorBundlesAreFormalDifferentcesWithATrivialBundle} to represent any element of the K-group as a [[virtual vector bundle|virtual]] difference of a vector bundle $E$ by a [[trivial vector bundle]], and $rk_x(E) \in \mathbb{N}$ denotes the [[rank of a vector bundle|rank]] of this vector bundle over the [[connected component]] of $x \in X$. Equivalently this means that every element of $K(X)$ decomposes as follows into a piece that has vanishing virtual rank over the connected component of $x$ and a virtual [[trivial vector bundle]]. \begin{displaymath} [E]- [X \times k^n] = \underset{\in \tilde K(X) \subset K(X)}{\underbrace{\left( [E] - [X \times k^{rk_x(E)}] \right)}} - \underset{\in \mathbb{Z} \subset K(X) }{\underbrace{[X \times k^{n-rk_x(E)}]}} \,. \end{displaymath} \end{prop} \begin{proof} By remark \ref{RestrictionInKTheoryToPointComputesVirtualRank} the kernel of $const_x^\ast$ is identified with the [[virtual vector bundles]] of vanishing virtual rank. By prop. \ref{OnCompactHausdorffVirtualVectorBundlesAreFormalDifferentcesWithATrivialBundle} this kernel is identified with the elements of the form \begin{displaymath} [E] - [X \times k^{rk_x(E)}] \,. \end{displaymath} \end{proof} \begin{example} \label{BottElement}\hypertarget{BottElement}{} \textbf{([[Bott element]])} For $S^2$ the [[Euclidean space|Euclidean]] [[2-sphere]], write \begin{displaymath} h \in Vect_{\mathbb{C}}(S^2) \longrightarrow K_{\mathbb{C}}(S^2) \end{displaymath} for the complex topological K-theory class of the [[basic complex line bundle on the 2-sphere]]. By prop. \ref{KGrupDirectSummandReducedKGroup} its image in [[reduced K-theory]] is the [[virtual vector bundle]] \begin{displaymath} \beta \;\coloneqq \; h-1 \in \tilde K_{\mathbb{C}}(S^2) \,. \end{displaymath} This is known as the \emph{[[Bott element]]}, due to its key role in the [[Bott periodicity]] of complex topological K-theory, discussed \hyperlink{BottPeriodicities}{below}. \end{example} In order to describe $\tilde K(X)$ itself as an equivalence class, we consider the followign refinement of [[stable equivalence of vector bundles]] (def. \ref{StableEquivalenceOfVectorBundles}): \begin{defn} \label{EquivalenceRelationForReducedKTheory}\hypertarget{EquivalenceRelationForReducedKTheory}{} \textbf{([[equivalence relation]] for [[reduced K-theory]] on [[compact Hausdorff spaces]])} For $X$ a [[topological space]], define an [[equivalence relation]] on the [[set]] of [[topological vector bundles]] $E \to X$ over $X$ by declaring that $E_1 \sim E_2$ if there exists $k_1, k_2 \in \mathbb{N}$ such that there is an [[isomorphism]] of [[topological vector bundles]] between the [[direct sum of vector bundles]] of $E_1$ with the [[trivial vector bundle]] $X \times \mathbb{R}^{k_1}$ and of $E_2$ with $X \times \mathbb{R}^{k_2}$ \begin{displaymath} (E_1 \sim_{red} E_2) \Leftrightarrow \left( \underset{k_1,k_2 \in \mathbb{N}}{\exists} \left( (E_1 \oplus_X (X \times \mathbb{R}^{k_1}) \;\simeq\; (E_2 \oplus_X (X \times \mathbb{R}^{k_2}) \right) \right) \,. \end{displaymath} The operation of [[direct sum of vector bundles]] descends to these quotients \begin{displaymath} [E_1] + [E_2] \;\coloneqq\; [ E_1 \oplus_X E_2 ] \end{displaymath} to yield a commutative [[semi-group]] \begin{displaymath} \left(Vect(X)_{/\sim_{red}}, +\right) \,. \end{displaymath} \end{defn} \begin{prop} \label{ReducedKEquivalenceRelationVerified}\hypertarget{ReducedKEquivalenceRelationVerified}{} For $X$ a [[compact Hausdorff space]] then the commutative [[monoid]] $(Vect(X)_{/\sim_{red}}, +)$ from def. \ref{EquivalenceRelationForReducedKTheory} is already an [[abelian group]] and is in fact [[natural isomorphism|naturally isomorphic]] to the [[reduced K-theory]] group $\tilde K(X)$ (def. \ref{KernelReducedKGroup}): \begin{displaymath} \tilde K(X) \simeq (Vect(X)_{/\sim_{red}}, +) \,. \end{displaymath} \end{prop} \begin{proof} By prop. \ref{KGrupDirectSummandReducedKGroup} $\tilde K(X)$ is the subgroup of the [[Grothendieck group of a commutative monoid|Grothendieck group]] $K(X)$ on the elements of the form $[E]- [X \times k^{rk_x(E)}]$, which are clearly entirely determined by $[E] \in Vect(X)_{/\sim}$. Hence we need to check if the equivalence relation of the Gorthendieck goup coincides with $\sim_{red}$ on these representatives. The relation in the Grothendieck group is given by \begin{displaymath} \left( [E_1] \sim [E_2] \right) \Leftrightarrow \left( \underset{[G], [H] \in Vect(X)_{/\sim}}{\exists} \left( ( [E_1]+ [G], [X \times k^{rk_x(E_1)}] + [G] ) \;=\; ( [E_2] + [H], [X \times k^{rk_x(E_2)}] + [H] ) \right) \right) \end{displaymath} As before, in prop. \ref{OnCompactHausdorffVirtualVectorBundlesAreFormalDifferentcesWithATrivialBundle} we may assume without restriction that $G = X \times k^{n_1}$ and $H = X \times k^{n_2}$ are [[trivial vector bundles]]. Then the above equality on the first component \begin{displaymath} [E_1] + [X \times k^{n_1}] = [E_2] + [X \times k^{n_2}] \end{displaymath} is the one that defines $\sim_{red}$, and since isomorphic vector bundles necessarily have the same rank, it implies the equality of the second component. \end{proof} \begin{remark} \label{}\hypertarget{}{} \textbf{([[non-unital ring|non-unital]] [[commutative ring]]-structure on $\tilde K(X)$)} In view of the [[commutative ring]] structure on the K-group $K(X)$ from remark \ref{KTheoryRing}, the reduced K-group $\tilde K(X)$ from def. \ref{KernelReducedKGroup}, being the [[kernel]] of a ring [[homomorphism]] (remark \ref{FunctorialityOfKGroup}) is an ideal in $K(X)$, hence itself a [[non-unital ring|non-unital]] [[commutative ring]]. (The ring unit of $K(X)$ is the class $[X \times k^1, X \times k^0]$ of the [[trivial vector bundle|trivial]] [[line bundle]] on $X$, which has virtual rank 1, and hence is not in $\tilde K(x)$.) \end{remark} \hypertarget{TheRelativeKGroup}{}\subsubsection*{{The relative K-group}}\label{TheRelativeKGroup} \begin{defn} \label{RelativeKTheory}\hypertarget{RelativeKTheory}{} \textbf{([[relative K-theory]])} Let \begin{enumerate}% \item $X$ be a [[compact Hausdorff space]]; \item $A \subset X$ a [[closed subspace]]. \end{enumerate} Then the \emph{[[relative K-theory]] group of the pair $(X,A)$}, denoted $K(X,A)$ is the [[reduced K-theory]] group (def. \ref{KernelReducedKGroup}) of the [[quotient space]] $X/A$ (\href{quotient+space#QuotientBySubspace}{this def.}): \begin{displaymath} K(X,A) \;\coloneqq\; \tilde K(X/A) \,. \end{displaymath} \end{defn} \begin{defn} \label{RelatveKTheoryReducesToBareKTheoryAndToReducedKTheory}\hypertarget{RelatveKTheoryReducesToBareKTheoryAndToReducedKTheory}{} \textbf{(expressing plain and reduced K-theory in terms of relative K-theory)} The [[relative K-theory]] construction from def. \ref{RelativeKTheory} reduces in special cases to the plain K-theory group and to the [[reduced K-theory]] group. Recall that for the case that $A = \emptyset \subset X$ then $X/\emptyset = X_+ = X \sqcup \ast$ (by \href{quotient+space#QuotientBySubspace}{this example}). Therefore: \begin{enumerate}% \item for $A = \emptyset \subset X$ we have $K(X,\emptyset) = \tilde K(X \sqcup \ast) \simeq K(X)$ (example \ref{ExpressingPlainKTHeoryGroupInTermsOfReducedKTheoryGroup}); \item for $A = \{x\} \subset X$ we have $K(X, \{x\}) = \tilde K(X/\{x\}) = \tilde K(X)$. \end{enumerate} \end{defn} \hypertarget{TheGradedKGroups}{}\subsubsection*{{The graded K-groups}}\label{TheGradedKGroups} The (reduced) K-theory groups of reduced suspensions of pointed space are called the ``K-group in degree 1'': \begin{defn} \label{GradedKGroups}\hypertarget{GradedKGroups}{} \textbf{(graded K-groups)} For $X$ a [[pointed topological space]] write \begin{displaymath} \tilde K^1(X) \;\coloneqq\; \tilde K(\Sigma X) \end{displaymath} for the [[reduced K-theory]] of the [[reduced suspension]] of $X$. For $X$ a [[compact Hausdorff space]] and $A \subset X$ a [[closed subspace]], write \begin{displaymath} K^1(X,A) \coloneqq \tilde K( \Sigma(X/A) ) \end{displaymath} for the [[reduced K-theory]] of the [[reduced suspension]] of the [[quotient space]]. We say these are the K(-cohomology)-groups in degree 1. For emphasis one says that the original K-groups are in degree zero and writes \begin{displaymath} K^0(X) \coloneqq K(X) \phantom{AAAA} \tilde K^0(X) \coloneqq \tilde K(X) \phantom{AAA} K^0(X,A) \coloneqq K(X,A) \,. \end{displaymath} The groups are collected to the \emph{graded K-groups}, which are the [[direct sums]] \begin{displaymath} \tilde K^\bullet(X) \coloneqq \tilde K^0(X) \oplus \tilde K^1(X) \end{displaymath} and \begin{displaymath} K^\bullet(X,A) \coloneqq K^0(X,A) \oplus K^1(X.A) \end{displaymath} regarded as $\mathbb{Z}/2$-graded groups. Under [[tensor product of vector bundles]] this becomes a non-unital $\mathbb{Z}/2$- [[graded-commutative ring]] (discussed \hyperlink{GradedRingStructure}{below}). \end{defn} Recall from example \ref{ExpressingPlainKTHeoryGroupInTermsOfReducedKTheoryGroup} and from example \ref{RelatveKTheoryReducesToBareKTheoryAndToReducedKTheory} the identifications of plain, reduced and relative K-groups, which with the degree-zero notation from def. \ref{GradedKGroups} read: \begin{displaymath} K^0(X, \emptyset) \simeq \tilde K^0(X_+) \simeq K^0(X) \end{displaymath} The analogue is true for the K-groups in degree 1 from def. \ref{GradedKGroups}, though this is no longer completely trivial: \hypertarget{ForNonCompactSpaces}{}\subsubsection*{{For non-compact spaces}}\label{ForNonCompactSpaces} By prop. \ref{OnCompactHausdorffVirtualVectorBundlesAreFormalDifferentcesWithATrivialBundle} the topological K-theory groups of [[compact topological spaces]] are [[representable functor|represended]] by [[homotopy classes]] of [[continuous functions]] into the [[classifying spaces]] $B O \times \mathbb{Z}$ and $B U \times \mathbb{Z}$, respectively (def. \ref{BUn}). \begin{displaymath} \left( X \text{compact} \right) \;\Rightarrow\; \left( K_{\mathbb{C}}(X) \simeq [X \to B U \times \mathbb{Z}] \phantom{AAAAA} K_{\mathbb{R}}(X) \simeq [X, B O \times \mathbb{Z}] \right) \,. \end{displaymath} There are various ways of generalizing this situation to non-compact spaces: \begin{defn} \label{GrothendieckGroupKTheory}\hypertarget{GrothendieckGroupKTheory}{} \textbf{(Grothendieck group topological K-theory)} The [[Grothendieck group]] construction on the [[monoid]] $(Vect(X)/_\sim, \oplus)$ of [[isomorphism classes]] of [[topological vector bundles]] makes sense for every [[topological space]] $X$. For non-compact $X$ this is usually just called that ``the Grothendieck group of vector bundles on $X$'', sometimes denoted \begin{displaymath} \mathbb{K}(X) \coloneqq GrothGroup( Vect(X)/_\sim, \oplus ) \,. \end{displaymath} \end{defn} \begin{defn} \label{RepresntableTopologicalKTheory}\hypertarget{RepresntableTopologicalKTheory}{} \textbf{(representable topological K-theory)} The group of [[homotopy classes]] of [[continuous functions]] into a (classifying) space is of course well defined for any domain space, hence for any topological space $X$ one may set \begin{displaymath} K_{\mathbb{C}}(X)_{rep} \;\coloneqq\; [X,B U \times \mathbb{Z}] \phantom{AAAAA} K_{\mathbb{R}}(X)_{rep} \;\coloneqq\; [X,B O \times \mathbb{Z}] \end{displaymath} This is called \emph{representable K-theory}. \end{defn} Representable K-theory over [[paracompact topological spaces]] was discussed in (\hyperlink{Karoubi70}{Karoubi 70}). \begin{defn} \label{InverseLimitTopologicalKTheory}\hypertarget{InverseLimitTopologicalKTheory}{} \textbf{(inverse limit topological K-theory)} Let $X$ be a [[topological space]] with the structure of a [[CW-complex]], hence a [[colimit]] (``[[direct limit]]'') $X \simeq \underset{\longrightarrow}{\lim}_n X_n$ such that each $X_n$ is a [[finite cell complex]], hence in particular a [[compact topological space]]. Then the [[limit]] ([[inverse limit]]) of the corresponding K-group \begin{displaymath} K(X)_{invl} \coloneqq \underset{\longleftarrow}{\lim}_n K(X_n) \end{displaymath} is called the \emph{inverse limit K-theory} of $X$. \end{defn} $\,$ No two of these definitions are equivalent to each other on all of their domain of defintion (e.g. \hyperlink{AndersonHodgkin68}{Anderson-Hodgkin 68}, \hyperlink{JackowskiOliver}{Jackowski-Oliver}). Representable and direct limit K-theory of spaces that are [[sequential colimits]] of [[compact spaces]] differ in general by a [[lim{\tt \symbol{94}}1]]-term (\hyperlink{SegalAtiyah69}{Segal-Atiyah 69, prop. 4.1}). \hypertarget{Examples}{}\subsection*{{Examples}}\label{Examples} \begin{example} \label{}\hypertarget{}{} \textbf{(topological K-theory ring of the [[point space]])} We have already seen in example \ref{KGroupOfThePoint} that \begin{displaymath} K(\ast) \simeq \mathbb{Z} \,. \end{displaymath} \end{example} \begin{example} \label{ComplexTopologicalKTheoryOfTheCircle}\hypertarget{ComplexTopologicalKTheoryOfTheCircle}{} \textbf{(complex topological K-theory ring of the [[circle]])} Since the complex [[general linear group]] $GL(n,\mathbb{C})$ is [[path-connected topological space|path-connected]] (\href{general+linear+group#ConnectednessOfGeneralLinearGroup}{this prop.}) and hence the [[classifying space]] $B GL(n,\mathbb{C})$ is [[simply connected topological space|simply]]-connected, hence its [[fundamental group]] is trivial $\pi_1(B GL(n,\mathbb{C})) \simeq [S^1, B GL(n,\mathbb{C})] = 1$. Accordingly, all [[complex vector bundles]] on $S^1$ are [[isomorphism|isomorphic]] toa [[trivial vector bundle]]. It follows that \begin{displaymath} K_{\mathbb{C}}(S^1) \simeq \mathbb{Z} \phantom{AA} \text{and} \phantom{AA} \tilde K_{ \mathbb{C} }(S^1) \simeq 0 \,. \end{displaymath} \end{example} \begin{example} \label{TopologicalKTheoryRingOfThe2Sphere}\hypertarget{TopologicalKTheoryRingOfThe2Sphere}{} \textbf{(complex topological K-theory ring of the [[2-sphere]])} For $X = \ast$ the [[point space]], the [[fundamental product theorem in topological K-theory]] \ref{FundamentalProductTheorem} states that the homomorphism \begin{displaymath} \itexarray{ \mathbb{Z}[h]/((h-1)^2) &\longrightarrow& K_{\mathbb{C}}(S^2) \\ h &\mapsto& h } \end{displaymath} is an [[isomorphism]]. This means that the relation $(h-1)^2 = 0$ satisfied by the [[basic complex line bundle on the 2-sphere]] (\href{basic+complex+line+bundle+on+the+2-sphere#TensorRelationForBasicLineBundleOn2Sphere}{this prop.}) is the \emph{only} relation is satisfies in topological K-theory. Notice that the underlying [[abelian group]] of $\mathbb{Z}[h]/((h-1)^2)$ is two [[direct sum]] copies of the [[integers]], \begin{displaymath} K_{\mathbb{C}}(S^2) \simeq \mathbb{Z} \oplus \mathbb{Z} = \langle 1, h\rangle \end{displaymath} one copy spanned by the [[trivial vector bundle|trivial]] [[complex line bundle]] on the 2-sphere, the other spanned by the [[basic complex line bundle on the 2-sphere]]. (In contrast, the underlying abelian group of the [[polynomial ring]] $\mathbb{R}[h]$ has infinitely many copies of $\mathbb{Z}$, one for each $h^n$, for $n \in \mathbb{N}$). It follows (by \href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop.}) that the [[reduced K-theory]] group of the 2-sphere is \begin{displaymath} \tilde K_{\mathbb{C}}(S^2) \simeq \mathbb{Z} \,. \end{displaymath} \end{example} \begin{example} \label{}\hypertarget{}{} \textbf{(complex topological K-theory of the [[torus]])} Consider the [[torus]] $S^1 \times S^1$, the [[product topological space]] of the [[circle]] with itself (with the [[Euclidean space|Euclidean]] [[subspace topology]]). By example \ref{ReducedKTheoryOfProductSpace} we have \begin{displaymath} \tilde K(S^1 \times S^1) \simeq \tilde K(\underset{S^2}{\underbrace{S^1 \wedge S^1}}) \oplus \underset{= 0}{ \underbrace{ \tilde K(S^1) \oplus \tilde K(S^1) }} \,. \end{displaymath} Since the [[smash product]] of the circle with itself is the [[2-sphere]], and since, the complex K-theory of the circle vanishes by example \ref{ComplexTopologicalKTheoryOfTheCircle}, this shows that the topological K-theory of the torus coincides with that of the 2-sphere: \begin{displaymath} K(S^1 \times S^1) \simeq K(S^2) \,. \end{displaymath} \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{homotopy_invariance}{}\subsubsection*{{Homotopy invariance}}\label{homotopy_invariance} \begin{prop} \label{KGroupsHomotopyInvariance}\hypertarget{KGroupsHomotopyInvariance}{} \textbf{([[homotopy invariance]] of K-groups)} Let $X$ and $Y$ be [[paracompact Hausdorff spaces]], and let \begin{displaymath} f \;\colon\; X \longrightarrow Y \end{displaymath} be a [[continuous function]] which is a [[homotopy equivalence]]. Then the pullback operation on (reduced) K-groups along $f$ (remark \ref{FunctorialityOfKGroup}, remark \ref{FunctorialityOfReducedKGroups}) is an [[isomorphism]]: \begin{displaymath} f^\ast \;\colon\; K(Y) \overset{\simeq}{\longrightarrow} K(X) \end{displaymath} and \begin{displaymath} f^\ast \;\colon\; \tilde K(Y) \overset{\simeq}{\longrightarrow} \tilde K(X) \,. \end{displaymath} \end{prop} \begin{proof} This is an immediate consequence of the fact that over paracompact Hausdorff spaces isomorphism classes of topological vector bundles are homotopy invariant (\href{topological+vector+bundle#HomotopyInvarianceOfIsomorphismClassesOfVectorBundles}{this example.}) \end{proof} \hypertarget{ExactSequences}{}\subsubsection*{{Exact sequences}}\label{ExactSequences} We discuss the [[long exact sequences in cohomology]] for topological K-theory. What makes these work in prop. \ref{ExactSequenceInReducedTopologicalKTheory} below, turns out to be the following property of [[topological vector bundles]]: \begin{lemma} \label{VectorBundleOnClosedSubsetOfCompactHausdorffSpaceIsPullbackOfBundeOnQuotientSpace}\hypertarget{VectorBundleOnClosedSubsetOfCompactHausdorffSpaceIsPullbackOfBundeOnQuotientSpace}{} \textbf{([[topological vector bundle]] [[trivial vector bundle|trivial]] over [[closed subspace]] of [[compact Hausdorff space]] is [[pullback bundle|pullback]] of bundle on [[quotient space]])} Let $X$ be a [[compact Hausdorff space]] and let $A \subset X$ be a [[closed subspace]]. If a [[topological vector bundle]] $E \overset{p}{\to} X$ is such that its restriction $E\vert_A$ is [[trivializable vector bundle|trivializable]], then $E$ is [[isomorphism|isomorphic]] to the [[pullback bundle]] $q^\ast E'$ of a topological vector bundle $E' \to X/A$ over the [[quotient space]].. \end{lemma} The \textbf{proof} of lemma \ref{VectorBundleOnClosedSubsetOfCompactHausdorffSpaceIsPullbackOfBundeOnQuotientSpace} is given at \emph{[[topological vector bundle]]} \href{topological+vector+bundle+VectorBundleOnClosedSubsetOfCompactHausdorffSpaceIsPullbackOfBundeOnQuotientSpace}{here}. What makes that proof work, in turn, is the [[Tietze extension theorem]], via \href{topological+vector+bundle#IsomorphismOfVectorBundlesOnClosedSubsetOfCompactHausdorffSpaceExtendsToOpenNeighbourhoods}{this lemma}. \begin{prop} \label{ExactSequenceInReducedTopologicalKTheory}\hypertarget{ExactSequenceInReducedTopologicalKTheory}{} \textbf{(exact sequence in reduced topological K-theory)} Let \begin{itemize}% \item $X$ be a [[pointed topological space|pointed]] [[compact Hausdorff space]]; \item $A \subset X$ a [[pointed topological space|pointed]] [[closed subset|closed]] [[subspace]] \end{itemize} Write $X/A$ for the corresponding [[quotient space]] (\href{quotient+space#QuotientBySubspace}{this def.}). Denote the [[continuous functions]] of [[subspace]] inclusion and of [[quotient space]] co-projection by \begin{displaymath} A \overset{i}{\longrightarrow} X \overset{q}{\longrightarrow} X/A \,, \end{displaymath} respectively. Then the induced sequence of [[reduced K-theory]] groups (def. \ref{KernelReducedKGroup}, remark \ref{FunctorialityOfReducedKGroups}) \begin{displaymath} \tilde K_{\mathbb{C}}(X/A) \overset{q^\ast}{\longrightarrow} \tilde K_{\mathbb{C}}(X) \overset{i^\ast}{\longrightarrow} \tilde K_{\mathbb{C}}(A) \end{displaymath} is [[exact sequence|exact]], meaning that they induce an [[isomorphism]] \begin{displaymath} im(q^\ast) \simeq ker(i^\ast) \end{displaymath} between the [[image]] of $g^\ast$ and the [[kernel]] of $i^\ast$. Similarly the sequence of unreduced and [[relative K-groups]] (def. \ref{RelativeKTheory}) is exact: \begin{displaymath} \tilde K_{\mathbb{C}}(X/A) \overset{q^\ast}{\longrightarrow} K_{\mathbb{C}}(X) \overset{i^\ast}{\longrightarrow} K_{\mathbb{C}}(A) \end{displaymath} \end{prop} (e.g. \href{Wirthmuller12}{Wirthmuller 12, p. 32 (34 of 67)}, \hyperlink{Hatcher}{Hatcher, prop. 2.9}) \begin{proof} First observe that both statements are equivalent to each other: By [[natural transformation|naturality]] of the construction of [[kernels]] the following [[commuting diagram|diagram commutes]]: \begin{displaymath} \itexarray{ \tilde K_{\mathbb{C}}(X/A) &\overset{q^\ast}{\longrightarrow}& \tilde K_{\mathbb{C}}(X) &\overset{i^\ast}{\longrightarrow}& \tilde K_{\mathbb{C}}(A) \\ {}^{\mathllap{id}}\downarrow && \downarrow && \downarrow \\ \tilde K_{\mathbb{C}}(X/A) &\overset{q^\ast}{\longrightarrow}& K_{\mathbb{C}}(X) &\overset{i^\ast}{\longrightarrow}& K_{\mathbb{C}}(A) \\ && \downarrow && \downarrow \\ && K_{\mathbb{C}}(\ast) &\underset{id}{\longrightarrow}& K_{\mathbb{C}}(\ast) } \,. \end{displaymath} Here the top vertical morphisms, the [[kernel]] inclusions, are [[monomorphisms]], and hence the top horizonal row is exact precisely if the middle horizontal row is. Hence it is sufficient to consider the top row. First of all the composite function $A \overset{i}{\to} X \overset{q}{\to} X/A$ is a [[constant function]], constant on the basepoint, and hence $i^\ast \circ q^\ast$ is a constant function, constant on zero. This says that we have an inclusion \begin{displaymath} im(q^\ast) \subset ker(i^\ast) \,. \end{displaymath} Hence it only remains to see for $x \in \tilde K(X)$ a class with $i^\ast(x) = 0$ that $x = q^\ast(y)$ comes from a class on the quotient $X/A$. But by compactness, the class $x$ is given by a [[virtual vector bundle]] of the form $E - rk(E)$ (prop. \ref{OnCompactHausdorffVirtualVectorBundlesAreFormalDifferentcesWithATrivialBundle}, prop. \ref{KGrupDirectSummandReducedKGroup}). and by prop. \ref{ReducedKEquivalenceRelationVerified} the triviality of $i^\ast(E- rk(E))$ means that there is $n \in \mathbb{N}$ such that $i \ast(E) \oplus_A (A \times \mathbb{C}^n)$ is a [[trivializable vector bundle]]. Therefore lemma \ref{VectorBundleOnClosedSubsetOfCompactHausdorffSpaceIsPullbackOfBundeOnQuotientSpace} gives that $E \oplus_X (X \times \mathbb{C}^n)$ is isomorphic to the [[pullback bundle]] of a vector bundle $E'$ on $X/A$. This proves the claim. \end{proof} \begin{cor} \label{LongExactSequenceInReducedTopologicalKTheory}\hypertarget{LongExactSequenceInReducedTopologicalKTheory}{} \textbf{([[long exact sequence]] in [[reduced K-theory|reduced topological K-theory]])} For $X$ a [[compact Hausdorff space]] and for $A \subset X$ a [[closed subset|closed]] [[subspace]] inclusion, there is a [[long exact sequence]] of [[reduced K-theory]] groups of the form \begin{displaymath} \cdots \longrightarrow \tilde K_{\mathbb{C}}(\Sigma (X/A)) \longrightarrow \tilde K_{\mathbb{C}}(\Sigma X) \longrightarrow \tilde K_{\mathbb{C}}( \Sigma A ) \longrightarrow \tilde K_{\mathbb{C}}(X/A) \longrightarrow \tilde K_{\mathbb{C}}(X) \longrightarrow \tilde K_{\mathbb{C}}(A) \,, \end{displaymath} where $\Sigma(-)$ denotes [[reduced suspension]]. \end{cor} \begin{proof} The sequence is induced by functoriality (remark \ref{FunctorialityOfReducedKGroups}) from the long [[cofiber sequence]] \begin{displaymath} A \overset{i}{\longrightarrow} X \longrightarrow X \cup Cone(A) \longrightarrow (X \cup Cone(A)) \cup Cone(X) \longrightarrow ((X \cup Cone(A)) \cup Cone(X)) \cup (X \cup Cone(A)) \longrightarrow \cdots \end{displaymath} obtained by consecutively forming [[mapping cones]]. By the discussion at \emph{[[topological cofiber sequence]]} this may be rearranged as \begin{displaymath} \itexarray{ A &\overset{i}{\longrightarrow}& X &\overset{j}{\longrightarrow}& Cone(i) &\longrightarrow& Cone(j) \\ && && \downarrow {\mathrlap{\text{homotopy} \atop \text{equivalence}}} && \downarrow^{\mathrlap{\text{homotopy} \atop \text{equivalence}}} \\ && && X/A && S A &\overset{S i}{\longrightarrow}& S X &\longrightarrow& \cdots } \end{displaymath} (\href{topological+cofiber+sequence#HomotopyEquivalenceSuspensionWithMappingConeOfMappingCone}{this prop.} and \href{topological+cofiber+sequence}{this}). The claim hence follows by the [[homotopy invariance]] of the K-groups (prop. \ref{KGroupsHomotopyInvariance}). \end{proof} $\,$ We discuss some useful consequences of the [[long exact sequences in cohomology]]. \begin{prop} \label{DirectSumOfKTheoryGroupsOverRetracts}\hypertarget{DirectSumOfKTheoryGroupsOverRetracts}{} \textbf{([[direct sum]] decomposition of K-theory groups over [[retractions]])} Let $X$ be a ([[pointed topological space|pointed]]) [[compact topological space]] and $A \subset X$ a ([[pointed topological space|pointed]]) [[closed subspace]], such that the [[subspace]] inclusion $A \overset{i}{\to}$ X as a [[retraction]], i.e. a [[continuous function]] $r \colon X \to A$ such that the [[composition|composite]] \begin{displaymath} id_A \;\colon\; A \overset{i}{\longrightarrow} X \overset{r}{\longrightarrow} A \end{displaymath} is the [[identity function]]. Then there is a splitting of the K-theory group of $X$ as a [[direct sum]] of the K-theory of $A$ and the [[relative K-theory]] of the [[quotient space]] $X/A$: \begin{displaymath} K(X) \;\simeq\; K(A) \oplus K(X,A) \end{displaymath} and in the pointed case a splitting of the [[reduced K-theory]] groups \begin{displaymath} \tilde K(X) \;\simeq\; \tilde K(A) \oplus K(X,A) \,. \end{displaymath} \end{prop} \begin{proof} The long exact sequence from cor \ref{LongExactSequenceInReducedTopologicalKTheory} together with the retraction yields \begin{displaymath} \tilde K(A) \underoverset {\underset{r^\ast}{\longrightarrow}} {\overset{i^\ast}{\longleftarrow}} {} \tilde K(X) \overset{}{\longleftarrow} K(X,A) \longleftarrow \tilde K(\Sigma A) \underoverset {\underset{}{\longrightarrow}} {\overset{}{\longleftarrow}} {} \tilde K(\Sigma X) \,. \end{displaymath} The splitting makes the morphisms $i^\ast$ and its suspension be [[surjections]], so that the long exact sequence decomposes into [[short exact sequences]] which are [[split exact sequence|split exact]]: \begin{displaymath} 0 \longleftarrow \tilde K(A) \underoverset {\underset{r^\ast}{\longrightarrow}} {\overset{i^\ast}{\longleftarrow}} {} \tilde K(X) \longleftarrow K(X,A) \longleftarrow 0 \,. \end{displaymath} \end{proof} \begin{example} \label{FiniteWedgePropertyForReducedTopologicalKTheory}\hypertarget{FiniteWedgePropertyForReducedTopologicalKTheory}{} \textbf{(finite [[wedge axiom]])} Let $(X,x)$ and $(Y,y)$ be two [[pointed topological space|pointed]] [[compact Hausdorff spaces]] with [[wedge sum]] \begin{displaymath} X \vee Y \;\coloneqq\; (X \sqcup Y)/(x \sim y) \end{displaymath} (i.e. the [[quotient topological space|quotient]] of their [[disjoint union space]] by re-identifying the base points). Then there is an [[isomorphism]] \begin{displaymath} \tilde K(X \vee Y) \simeq \tilde K(X) \oplus \tilde K(Y) \,. \end{displaymath} \end{example} \begin{proof} We have [[retracts]] \begin{displaymath} X = X \times \{y\} \hookrightarrow X \times Y \end{displaymath} and \begin{displaymath} Y = \{x\} \times Y \hookrightarrow (X \times Y) / (X \times \{y\}) \,. \end{displaymath} Applying prop. \ref{DirectSumOfKTheoryGroupsOverRetracts} to each of these consecutively yields an isomorphism that establishes the claim: \begin{displaymath} \tilde K(X \times Y) \simeq \tilde K(X) \oplus \tilde K( (X \times Y)/(X \times \{y\}) ) \simeq \tilde K(X) \oplus \tilde K(Y) \oplus \tilde K(X \wedge Y) \,. \end{displaymath} This proves the claim. Alternatively, we may again argue directly from the long exact sequence: Consider the subspace inclusion \begin{displaymath} X \subset X \vee Y \,. \end{displaymath} This is a [[closed subspace]] because its [[complement]] is $(X \vee Y) \setminus X = Y \setminus \{y\}$ which is open because all points in a [[Hausdorff space]] (which is in particular $T_1$-[[separation axiom|separated]]) are closed. Moreover, by definition of [[wedge sum]] the corresponding [[quotient space]] is $Y$: \begin{displaymath} (X \vee Y) / X \simeq Y \,. \end{displaymath} Similary for the inclusion of $Y$. Hence in particular these inclusions and quotients are [[retractions]] in that they factor the [[identity maps]] as \begin{displaymath} id_X \;\colon\; X \longrightarrow X \vee Y \longrightarrow X \phantom{AA} \text{and} \phantom{AA} id_Y \;\colon\; Y \longrightarrow X \vee Y \longrightarrow Y \,. \end{displaymath} By functoriality (remark \ref{FunctorialityOfReducedKGroups}) this implies that similarly \begin{displaymath} id_{\tilde K(X)} \;\colon\; \tilde K(X) \longrightarrow \tilde K(X \vee Y) \longrightarrow \tilde K(X) \phantom{AA} \text{and} \phantom{AA} id_{\tilde K(Y)} \;\colon\; \tilde K(Y) \longrightarrow \tilde K(X \vee Y) \longrightarrow \tilde K(Y) \,. \end{displaymath} In particular these maps are [[injective function|injections]] and [[surjective function|surjections]], respectively. Therefore by prop. \ref{ExactSequenceInReducedTopologicalKTheory} there are [[short exact sequences]] of the form \begin{displaymath} 0 \to \tilde K(X) \longrightarrow \tilde K(X \vee Y) \longrightarrow \tilde K(Y) \to 0 \end{displaymath} which are [[split exact sequences|split exact]]. This implies the claim. \end{proof} \hypertarget{ExternalProducts}{}\subsubsection*{{External product}}\label{ExternalProducts} \begin{defn} \label{ExternalTensorProductInKTheory}\hypertarget{ExternalTensorProductInKTheory}{} \textbf{(external product in K-theory)} Let $X$ and $Y$ be [[topological spaces]]. Then the [[external tensor product of vector bundles|external tensor product]] of [[topological vector bundles]] over $X$ and $Y$ \begin{displaymath} \boxtimes \;\colon\; Vect(X) \times Vect(Y) \longrightarrow Vect(X \times Y) \end{displaymath} induces on K-groups an \emph{external product} \begin{displaymath} \boxtimes \;\colon\; K(X) \oplus K(Y) \longrightarrow K(X \times Y) \end{displaymath} \end{defn} We want to see that this restricts to an operation on [[reduced K-theory]]. To this end we need the following proposition: \begin{prop} \label{ReducedKTheoryOfProductSpace}\hypertarget{ReducedKTheoryOfProductSpace}{} \textbf{(reduced K-theory of product space)} Let $(X,x_0)$ $(Y,y_0)$ be two [[pointed topological space|pointed]] [[compact Hausdorff spaces]] with $X \times Y$ their [[product topological space]] and $X \wedge Y$ their [[smash product]]. Then there is an isomorphism of [[reduced K-theory]] groups \begin{displaymath} \tilde K(X \times Y) \;\simeq\; \tilde K(X \wedge Y) \oplus \tilde K(X) \oplus \tilde K(Y) \,. \end{displaymath} \end{prop} \begin{proof} Be definition, the [[smash product]] is the [[quotient topological space]] of the [[product topological space]] by the [[wedge sum]]: \begin{displaymath} X \wedge Y \;=\; (X \times Y) / (X \vee Y) \end{displaymath} for the inclusion \begin{displaymath} \itexarray{ X \vee Y &\overset{i}{\longrightarrow}& X \times Y \\ x &\mapsto& (x, y_0) \\ y &\mapsto& (x_0, y) } \,. \end{displaymath} This quotient is still a [[compact topological space]] because [[continuous images of compact spaces are compact]] and and it is still [[Hausdorff topological space]] because [[compact subspaces in Hausdorff spaces are separated by neighbourhoods from points]], so that the point $(X \vee Y)/ (X \vee Y) \in (X \times Y)/(X \vee Y)$ is separated by open neighbourhoods from points in $(X \times Y) \setminus (X \vee Y)$. Hence corollary \ref{LongExactSequenceInReducedTopologicalKTheory} yields a [[long exact sequence]] of the form \begin{displaymath} \tilde K(\Sigma(X \times Y)) \overset{\Sigma i^\ast}{\longrightarrow} \tilde K( (\Sigma X) \vee (\Sigma Y)) \longrightarrow \tilde K( X \wedge Y ) \longrightarrow \tilde K( X \times Y ) \overset{i^\ast}{\longrightarrow} \tilde K(X \vee Y) \,. \end{displaymath} By example \ref{FiniteWedgePropertyForReducedTopologicalKTheory} the two terms involving reduced topological K-theory of a wedge sum are direct sums of the reduced K-theory of the wedge summands: \begin{displaymath} \tilde K(\Sigma(X \times Y)) \overset{\Sigma i^\ast}{\longrightarrow} \tilde K(\Sigma X) \oplus \tilde K(\Sigma Y) \longrightarrow \tilde K( X \wedge Y ) \longrightarrow \tilde K( X \times Y ) \overset{i^\ast}{\longrightarrow} \tilde K(X) \oplus \tilde K(Y) \,. \end{displaymath} Now observe that, via example \ref{FiniteWedgePropertyForReducedTopologicalKTheory}, the morphisms $i^\ast$ and $\Sigma i^\ast$ are [[split epimorphisms]], with [[section]] given by ``external direct sum'' \begin{displaymath} \itexarray{ \tilde K(X) \oplus \tilde K(Y) &\longrightarrow& \tilde K(X \times Y) \\ (E_X, E_Y) &\mapsto& p_X^\ast(E_X) + p_Y^\ast(E_Y) } \,. \end{displaymath} This means that the long exact sequence decomposes into [[short exact sequences]] \begin{displaymath} 0 \to \tilde K(X \wedge Y) \longrightarrow \tilde K(X \times Y) \overset{i^\ast}{\longrightarrow} \tilde K(X) \oplus \tilde K(Y) \to 0 \end{displaymath} which moreover are [[split exact sequence|split exact]]. This yields the claim. \end{proof} It follows that: \begin{prop} \label{ExternalTensorProductOnReducedKGroups}\hypertarget{ExternalTensorProductOnReducedKGroups}{} \textbf{(external product on reduced K-groups)} Let $X$ and $Y$ be [[pointed topological space|pointed]] [[compact Hausdorff spaces]]. Then the external product on K-groups (def. \ref{ExternalTensorProductInKTheory}) restricts to [[reduced K-groups]] under the inclusion $\tilde K(-) \hookrightarrow K(-)$ from prop. \ref{KGrupDirectSummandReducedKGroup} and the inclusion $\tilde K(-\wedge -) \hookrightarrow K(-\times -)$ from prop. \ref{ReducedKTheoryOfProductSpace}, in that there is a morphism $\tilde \boxtimes$ that makes the following [[commuting diagram|diagram commute]]: \begin{displaymath} \itexarray{ \tilde K(X) \oplus \tilde K(Y) &\hookrightarrow& K(X) \oplus K(Y) \\ {}^{\mathllap{\tilde \boxtimes}}\downarrow && \downarrow^{\mathrlap{\boxtimes}} \\ \tilde K(X \wedge Y) &\hookrightarrow& K(X \times Y) } \,. \end{displaymath} \end{prop} \begin{proof} By prop. \ref{KGrupDirectSummandReducedKGroup} the elements in $\tilde K(X)$ and $\tilde K(Y)$ are represented by [[virtual vector bundles]] which vanish when restricted to the base points $x \in X$ and $y \in Y$, respectively. But this implies that their [[external tensor product of vector bundles]] vanishes over $X \times \{y\}$ and $\{x\} \times Y$. From the proof of prop. \ref{ReducedKTheoryOfProductSpace} it is the restriction of the product to to these subspaces that gives the map \begin{displaymath} K(X \times Y) \simeq \tilde K(X \times Y) \oplus \tilde K(X) \oplus \tilde K(Y) \longrightarrow \tilde K(X) \oplus \tilde K(Y) \end{displaymath} and hence on these element this component vanishes. \end{proof} \hypertarget{fundamental_product_theorem}{}\subsubsection*{{Fundamental product theorem}}\label{fundamental_product_theorem} In order to compute K-classes, one needs the computation of some basic cases, such as that of the K-theory groups of [[n-spheres]] and of [[product spaces]] with $n$-spheres. The \emph{[[fundamental product theorem in K-theory]]} determines these K-theory groups. Its result is most succinctly summarized by the statement of \emph{[[Bott periodicity]]}, to which we turn \hyperlink{BottPeriodicities}{below}. Before discussing the product theorem, it is useful to recall the analogous situation in [[ordinary cohomology]] $H^\bullet(-) \coloneqq H^\bullet(\mathbb{Z})$. Here it is immediate to determine the cohomology groups of the [[n-spheres]], in particular one finds that for the [[2-sphere]] is $H^\bullet(S^2) = \mathbb{Z}\langle e\rangle \oplus \mathbb{Z}\langle h\rangle$, for $h \in \tilde H^2(S^2)$ the [[first Chern class]] of the [[basic complex line bundle on the 2-sphere]]. As a ring this has the trivial product $h^2 = 0$, since by degree-reasons the [[cup product]] goes $H^2(S^2) \otimes H^2(S^2) \to H^4(S^2) = 0$. Therefore me may write the ordinary [[cohomology ring]] of the 2-sphere as the following [[quotient ring]] of the [[polynomial ring]] in the generator $h$: \begin{displaymath} H^\bullet(S^2) \simeq \mathbb{Z}[h]/\left( (h)^2 \right) \,. \end{displaymath} Notice that in ordinary cohomology $h$ is also the generator of the [[reduced cohomology]] group $\tilde H^\bullet(S^2) \simeq \mathbb{Z}\langle h\rangle$. Now as an element of $K_{\mathbb{C}}(S^2)$ the [[basic complex line bundle on the 2-sphere]] is not reduced, but its image in [[reduced K-theory]] is the [[Bott element]] [[virtual vector bundle]] $\beta = h-1$ (def. \ref{BottElement}). The [[fundamental product theorem in topological K-theory]] says, in particular, that the complex topological K-theory of the 2-sphere behaves in just the same way as the ordinary cohomology, if only one replaces the generator $h$ by $\beta = h-1$. First of all, the Bott element also squares to zero: \begin{prop} \label{BottElementNilotentcy}\hypertarget{BottElementNilotentcy}{} \textbf{(nilpotency of the [[Bott element]])} For $S^2 \subset \mathbb{R}^3$ the [[2-sphere]] with its [[Euclidean space|Euclidean]] [[subspace topology]], write $h \in Vect_{\mathbb{C}}(S^2)_{/\sim}$ for the [[basic complex line bundle on the 2-sphere]]. Its image in the [[topological K-theory]] ring $K(S^2)$ satisfies the relation \begin{displaymath} 2 h = h^2 + 1 \;\;\Leftrightarrow\;\; (h-1)^2 = 0 \end{displaymath} \end{prop} A \textbf{proof} of this may be obtained by analysis of the relevant [[clutching function]], see \emph{\href{basic+complex+line+bundle+on+the+2-sphere#TensorRelationForBasicLineBundleOn2Sphere}{here}}. Notice that $h-1$ is the image of $h$ in the [[reduced K-theory]] $\tilde K(X)$ of $S^2$ under the splitting $K(X) \simeq \tilde K(X) \oplus \mathbb{Z}$ (by \href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop.}). This element \begin{displaymath} h - 1 \in \tilde K_{\mathbb{C}}(S^2) \end{displaymath} is the \emph{[[Bott element]]} of complex [[topological K-theory]] (def. \ref{BottElement}). It follows from prop. \ref{BottElementNilotentcy} that there is a [[ring homomorphism]] of the form \begin{displaymath} \itexarray{ \mathbb{Z}[h]/\left( (h-1)^2 \right) &\overset{}{\longrightarrow}& K(S^2) \\ h &\overset{\phantom{AAA}}{\mapsto}& h } \end{displaymath} from the [[polynomial ring]] in one abstract generator, [[quotient ring|quotiented]] by this relation, to the [[topological K-theory]] ring. More generally, for $X$ a [[topological space]], then this induces the composite ring homomorphism \begin{displaymath} \itexarray{ K(X) \otimes \mathbb{Z}[h]/\left((h-1)^2 \right) & \longrightarrow & K(X) \otimes K(S^2) & \overset{\boxtimes}{\longrightarrow} & K(X \times S^2) \\ (E, h) &\overset{\phantom{AAA} }{\mapsto}& (E,H) &\overset{\phantom{AAA}}{\mapsto}& (\pi_{X}^\ast E) \cdot (\pi_{S^2}^\ast H) } \end{displaymath} to the topological K-theory ring of the [[product topological space]] $X \times S^2$, where the second map $\boxtimes$ is the external product from def. \ref{ExternalTensorProductInKTheory}. \begin{prop} \label{FundamentalProductTheorem}\hypertarget{FundamentalProductTheorem}{} \textbf{([[fundamental product theorem in topological K-theory]])} For $X$ a [[compact Hausdorff space]], then this ring homomorphism is an [[isomorphism]]. \end{prop} (e.g. \hyperlink{Hatcher}{Hatcher, theorem 2.2}) \begin{remark} \label{}\hypertarget{}{} More generally, for $L\to X$ a [[complex line bundle]] with class $l \in K(X)$ and with $P(1 \oplus L)$ denoting its [[projective bundle]] then \begin{displaymath} K(X)[h]/((h-1)(l \cdot h -1)) \simeq K(P(1 \oplus L)) \end{displaymath} \end{remark} (e.g. \hyperlink{Wirthmuller12}{Wirthmuller 12, p. 17}) As a special case this implies the first statement above: For $X = \ast$ the product theorem prop. \ref{FundamentalProductTheorem} says in particular that the first of the two morphisms in the composite is an [[isomorphism]] (example \ref{TopologicalKTheoryRingOfThe2Sphere} below) and hence by the [[two-out-of-three]]-property for [[isomorphisms]] it follows that: \begin{cor} \label{ExternalProductTheorem}\hypertarget{ExternalProductTheorem}{} \textbf{([[external product theorem in topological K-theory]])} For $X$ a [[compact Hausdorff space]] we have that the external product in K-theory $\boxtimes$ (def. \ref{ExternalTensorProductInKTheory}) with vector bundles on the [[2-sphere]] \begin{displaymath} \boxtimes \;\colon\; K(X) \otimes K(S^2) \overset{\simeq}{\longrightarrow} K(X \times S^2) \end{displaymath} is an [[isomorphism]] in [[topological K-theory]]. \end{cor} \hypertarget{BottPeriodicities}{}\subsubsection*{{Bott periodicity}}\label{BottPeriodicities} When restricted to [[reduced K-theory]] then the external product theorem (cor. \ref{ExternalProductTheorem}) yields the statement of [[Bott periodicity]] of topological K-theory: \begin{prop} \label{BottPeriodicity}\hypertarget{BottPeriodicity}{} \textbf{([[Bott periodicity]])} Let $X$ be a [[pointed topological space|pointed]] [[compact Hausdorff space]]. Then the external product $\tilde X$ in reduced K-theory (prop. \ref{ExternalTensorProductInKTheory}) with the image of the [[basic complex line bundle on the 2-sphere]] in reduced K-theory yields an [[isomorphism]] of [[reduced K-groups]] \begin{displaymath} (h-1) \widetilde \boxtimes (-) \;\colon\; \tilde K(X) \overset{\simeq}{\longrightarrow} \tilde K(\Sigma^2 X) \end{displaymath} from that of $X$ to that of its double [[suspension]] $\Sigma^2 X$. \end{prop} \hyperlink{Wirthmuller12}{e.g. Wirthmuller 12, p. 34 (36 of 67)} \begin{proof} By \href{topologica+K-theory#ReducedKTheoryOfProductSpace}{this example} there is for any two pointed compact Hausdorff spaces $X$ and $Y$ an [[isomorphism]] \begin{displaymath} \tilde K(Y \times X) \simeq \tilde K(Y \wedge X) \oplus \tilde K(Y) \oplus \tilde K(X) \end{displaymath} relating the reduced K-theory of the [[product topological space]] with that of the [[smash product]]. Using this and the fact that for any pointed compact Hausdorff space $Z$ we have $K(Z) \simeq \tilde K(Z) \oplus \mathbb{Z}$ (\href{topological+K-theory#KGrupDirectSummandReducedKGroup}{this prop.}) the isomorphism of the external product theorem (cor. \ref{ExternalProductTheorem}) \begin{displaymath} K(S^2) \otimes K(X) \underoverset{\simeq}{\boxtimes}{\longrightarrow} K(S^2 \times X) \end{displaymath} becomes \begin{displaymath} \left( \tilde K(S^2) \oplus \mathbb{Z} \right) \otimes \left( \tilde K(X) \oplus \mathbb{Z} \right) \;\simeq\; \left( \tilde K(S^2 \times X) \oplus \mathbb{Z} \right) \simeq \left( \tilde K(S^2 \wedge X) \oplus \tilde K(S^2) \oplus \tilde K(X) \oplus \mathbb{Z} \right) \,. \end{displaymath} Multiplying out and chasing through the constructions to see that this reduces to an isomorphism on the common summand $\tilde K(S^2) \oplus \tilde K(X) \oplus \mathbb{Z}$, this yields an isomorphism of the form \begin{displaymath} \tilde K(S^2) \otimes \tilde K(X) \underoverset{\simeq}{\widetilde \boxtimes}{\longrightarrow} \tilde K(S^2 \wedge X) = \tilde K(\Sigma^2 X) \,, \end{displaymath} where on the right we used that [[smash product]] with the 2-sphere is the same as double [[suspension]]. Finally there is an [[isomorphism]] \begin{displaymath} \itexarray{ \mathbb{Z} &\underoverset{\simeq}{ \beta }{\longrightarrow}& \tilde K_{\mathbb{C}}(S^2) \\ 1 &\overset{\phantom{AAA}}{\mapsto}& (h-1) } \end{displaymath} (example \ref{TopologicalKTheoryRingOfThe2Sphere}). The composite \begin{displaymath} \itexarray{ \tilde K_{\mathbb{C}}(X) & \simeq \mathbb{Z} \otimes \tilde K_{\mathbb{C}}(X) \overset{ \beta \otimes id }{\longrightarrow} \tilde K_{\mathbb{C}}(S^2) \otimes \tilde K_{\mathbb{C}}(X) \underoverset{\simeq}{\widetilde \boxtimes}{\longrightarrow} & \tilde K_{\mathbb{C}}(S^2 \wedge X) = \tilde K_{\mathbb{C}}(\Sigma^2 X) \\ E - rk_x(E) &\overset{\phantom{AAAA}}{\mapsto}& (h-1) \widetilde \boxtimes (E - rk_x(E)) } \end{displaymath} is the isomorphism to be established. \end{proof} \hypertarget{GradedRingStructure}{}\subsubsection*{{Graded-commutative ring structure}}\label{GradedRingStructure} The external product on reduced K-groups from prop. \ref{ExternalTensorProductOnReducedKGroups} allows to extend the [[commutative ring]] structure from the plain K-groups (remark \ref{KTheoryRing}) to a ring structure on the graded K-groups from def. \ref{GradedKGroups}. This is def. \ref{ProductOnGradedKGroups} below. To state this definition, recall that \begin{enumerate}% \item for $X$ a [[pointed topological space]] then the [[diagonal]] map to its [[product topological space]] $X \times X$ induced a diagonal to the [[smash product]] $X \wedge X = (X \times X)/(X \vee X)$ \begin{displaymath} X \overset{\Delta_X}{\longrightarrow} X \times X \overset{q}{\longrightarrow} X\wedge X \end{displaymath} \item since [[reduced suspension]] is equivalently [[smash product]] with the [[circle]] $\Sigma X \simeq S^1 \wedge X$, there are induced ``partial diagonal maps'' of the form \begin{displaymath} \Sigma (q \circ \Delta_X) \;\colon\; \Sigma X \simeq S^1 \wedge X \overset{S^1 \wedge (q\circ \Delta_X)}{\longrightarrow} S^1 \wedge X \wedge X \simeq (\Sigma X) \wedge X \end{displaymath} etc. \end{enumerate} \begin{defn} \label{ProductOnGradedKGroups}\hypertarget{ProductOnGradedKGroups}{} \textbf{(product on graded K-groups)} For $X$ a [[pointed topological space|pointed]] [[compact Hausdorff space]], the \emph{product on graded K-groups} \begin{displaymath} (-)\cdot (-) \;\colon\; K^\bullet(X) \otimes K^\bullet(X) \longrightarrow K^\bullet(X) \end{displaymath} is the [[linear map]] which on the direct summands $\tilde K^0(X) \coloneqq \tilde K(X)$ and $\tilde K^1(X) \coloneqq \tilde K(\Sigma X)$ is given by the following morphisms, which are [[composition|composites]] of the external product $\tilde \boxtimes$ on reduced K-groups from prop. \ref{ExternalTensorProductOnReducedKGroups} with pullbacks along the above suspended diagonal maps: \begin{displaymath} \tilde K(X) \otimes \tilde K(X) \overset{\tilde \boxtimes}{\longrightarrow} \tilde K(X) \end{displaymath} \begin{displaymath} \tilde K(X) \otimes \tilde K(\Sigma X) \overset{\tilde \boxtimes}{\longrightarrow} \tilde K(X \wedge (\Sigma X)) \overset{ (\Sigma(q \circ \Delta_X))^\ast }{\longrightarrow} \tilde K(\Sigma X) \end{displaymath} \begin{displaymath} \tilde K(\Sigma X) \otimes \tilde K(\Sigma X) \overset{\tilde \boxtimes}{\longrightarrow} \tilde K( (\Sigma X) \wedge (\Sigma X)) \overset{ (\Sigma^2(q \circ \Delta_X))^\ast }{\longrightarrow} \tilde K(\Sigma^2 X) \simeq \tilde K(X) \,, \end{displaymath} where the last isomorphism on the right is [[Bott periodicity]] isomorphism (prop. \ref{BottPeriodicity}). \end{defn} \hypertarget{ClassifyingSpace}{}\subsubsection*{{Classifying space}}\label{ClassifyingSpace} We discuss how the [[classifying space]] for $\tilde K^0$ is the [[delooping]] of the [[stable unitary group]]. \begin{defn} \label{BUn}\hypertarget{BUn}{} \textbf{([[classifying space]] of the [[stable unitary group]])} For $n \in \mathbb{N}$ write $U(n)$ for the [[unitary group]] in dimension $n$ and $O(n)$ for the [[orthogonal group]] in dimension $n$, both regarded as [[topological groups]] in the standard way. Write $B U(n) , B O(n)\in$ [[Top]] for the corresponding [[classifying space]]. Write \begin{displaymath} [X, B O(n)] := \pi_0 Top(X, B O(n)) \end{displaymath} and \begin{displaymath} [X, B U(n)] := \pi_0 Top(X, B U(n)) \end{displaymath} for the set of [[homotopy]]-classes of [[continuous function]]s $X \to B U(n)$. \end{defn} \begin{prop} \label{BUnClassifyingSpace}\hypertarget{BUnClassifyingSpace}{} This is equivalently the set of [[isomorphism]] classes of $O(n)$- or $U(n)$-[[principal bundle]]s on $X$ as well as of rank-$n$ real or complex [[vector bundle]]s on $X$, respectively: \begin{displaymath} [X, B O(n)] \simeq O(n) Bund(X) \simeq Vect_{\mathbb{R}}(X,n) \,, \end{displaymath} \begin{displaymath} [X, B U(n)] \simeq U(n) Bund(X) \simeq Vect_{\mathbb{C}}(X,n) \,. \end{displaymath} \end{prop} \begin{defn} \label{InclusionOfUns}\hypertarget{InclusionOfUns}{} For each $n$ let \begin{displaymath} U(n) \to U(n+1) \end{displaymath} be the inclusion of [[topological group]]s given by inclusion of $n \times n$ [[matrices]] into $(n+1) \times (n+1)$-matrices given by the block-diagonal form \begin{displaymath} \left[g\right] \mapsto \left[ \itexarray{ 1 & [0] \\ [0] & [g] } \right] \,. \end{displaymath} This induces a corresponding sequence of morphisms of classifying spaces, def. \ref{BUn}, in [[Top]] \begin{displaymath} B U(0) \hookrightarrow B U(1) \hookrightarrow B U(2) \hookrightarrow \cdots \,. \end{displaymath} Write \begin{displaymath} B U := {\lim_{\to}}_{n \in \mathbb{N}} B U(n) \end{displaymath} for the [[homotopy colimit]] (the ``homotopy [[direct limit]]'') over this diagram (see at \emph{[[homotopy colimit]]} the section \emph{\href{homotopy+limit#SequentialHocolims}{Sequential homotopy colimits}}). \end{defn} \begin{remark} \label{}\hypertarget{}{} The [[topological space]] $B U$ is \textbf{not} equivalent to $B U(\mathcal{H})$, where $U(\mathcal{H})$ is the [[unitary group]] on a separable infinite-dimensional [[Hilbert space]] $\mathcal{H}$. In fact the latter is [[contractible]], hence has a [[weak homotopy equivalence]] to the point \begin{displaymath} B U(\mathcal{H}) \simeq * \end{displaymath} while $B U$ has nontrivial [[homotopy group]]s in arbitrary higher degree (by [[Kuiper's theorem]]). But there is the group $U(\mathcal{H})_{\mathcal{K}} \subset U(\mathcal{H})$ of unitary operators that differ from the [[identity]] by a [[compact operator]]. This is essentially $U = \Omega B U$. See \hyperlink{Uk}{below}. \end{remark} \begin{prop} \label{}\hypertarget{}{} Write $\mathbb{Z}$ for the set of [[integer]]s regarded as a [[discrete topological space]]. The product spaces \begin{displaymath} B O \times \mathbb{Z}\,,\;\;\;\;\;B U \times \mathbb{Z} \end{displaymath} are [[classifying spaces]] for real and complex $K$-theory, respectively: for every compact Hausdorff topological space $X$, we have an isomorphism of groups \begin{displaymath} \tilde K(X) \simeq [X, B U ] \,. \end{displaymath} \begin{displaymath} K(X) \simeq [X, B U \times \mathbb{Z}] \,. \end{displaymath} \end{prop} See for instance (\hyperlink{Friedlander}{Friedlander, prop. 3.2}) or (\hyperlink{Karoubi}{Karoubi, prop. 1.32, theorem 1.33}). \begin{proof} First consider the statement for reduced cohomology $\tilde K(X)$: Since a [[compact topological space]] is a [[compact object]] in [[Top]] (and using that the [[classifying spaces]] $B U(n)$ are (see there) [[paracompact topological space]]s, hence normal, and since the inclusion morphisms are closed inclusions (\ldots{})) the [[hom-functor]] out of it commutes with the [[filtered colimit]] \begin{displaymath} \begin{aligned} Top(X, B U) &= Top(X, {\lim_\to}_n B U(n)) \\ & \simeq {\lim_\to}_n Top(X, B U (n)) \end{aligned} \,. \end{displaymath} Since $[X, B U(n)] \simeq U(n) Bund(X)$, in the last line the colimit is over [[vector bundle]]s of all ranks and identifies two if they become isomorphic after adding a trivial bundle of some finite rank. For the full statement use that by prop. \ref{missing} we have \begin{displaymath} K(X) \simeq H^0(X, \mathbb{Z}) \oplus \tilde K(X) \,. \end{displaymath} Because $H^0(X,\mathbb{Z}) \simeq [X, \mathbb{Z}]$ it follows that \begin{displaymath} H^0(X, \mathbb{Z}) \oplus \tilde K(X) \simeq [X, \mathbb{Z}] \times [X, B U] \simeq [X, B U \times \mathbb{Z}] \,. \end{displaymath} \end{proof} There is another variant on the classifying space \begin{defn} \label{Uk}\hypertarget{Uk}{} Let \begin{displaymath} U_{\mathcal{K}} = \left\{ g \in U(\mathcal{H}) | g - id \in \mathcal{K} \right\} \end{displaymath} be the group of unitary operators on a [[separable Hilbert space]] $\mathcal{H}$ which differ from the identity by a [[compact operator]]. \end{defn} Palais showed that \begin{prop} \label{}\hypertarget{}{} $U_\mathcal{K}$ is a [[homotopy equivalence|homotopy equivalent]] model for $B U$. It is in fact the [[norm closure]] of the evident model of $B U$ in $U(\mathcal{H})$. Moreover $U_{\mathcal{K}} \subset U(\mathcal{H})$ is a [[Banach Lie group|Banach Lie]] [[normal subgroup]]. \end{prop} Since $U(\mathcal{H})$ is [[contractible]], it follows that \begin{displaymath} B U_{\mathcal{K}} \coloneqq U(\mathcal{H})/U_{\mathcal{K}} \end{displaymath} is a model for the [[classifying space]] of reduced K-theory. \hypertarget{of_noncompact_spaces}{}\subsubsection*{{Of non-compact spaces}}\label{of_noncompact_spaces} For $G$ a compact Lie group with [[classifying space]] $B G$ (in general non-compact) then the map from the [[Grothendieck group]] $\mathbb{K}(B G) \coloneqq Grp(Vect(B G)/_\sim, \oplus)$ (def. \ref{GrothendieckGroupKTheory}) to the representable K-theory $K(B G)_{rep} \coloneqq [X, B U \times\mathbb{Z}]$ (def. \ref{RepresntableTopologicalKTheory}) is [[injective function|injective]] \begin{displaymath} \mathbb{K}(B G) \hookrightarrow K(B G)_{rep} \,. \end{displaymath} \hyperlink{JackowskiOliver}{Jackowski-Oliver} \hypertarget{AsAGeneralizedCohomologyTheory}{}\subsubsection*{{As a generalized cohomology theory}}\label{AsAGeneralizedCohomologyTheory} Topological K-theory satisfies the axioms of a [[generalized (Eilenberg-Steenrod) cohomology theory]] (\hyperlink{AtiyahHirzebruch61}{Atiyah-Hirzebruch 61, 1.8}). This is essentially the statement of the long exact sequences \hyperlink{ExactSequences}{above}. \hypertarget{ComplexOrientationAndFormalGroupLaw}{}\subsubsection*{{Complex orientation and formal group law}}\label{ComplexOrientationAndFormalGroupLaw} A [[multiplicative cohomology theory|multiplicative]] [[generalized (Eilenberg-Steenrod) cohomology]] theory $E$ is called \emph{[[complex oriented cohomology|complex orientable]]} if the element $1 \in E(\ast) \simeq \tilde E(S^0)$ is in the image of the pullback morphism \begin{displaymath} \tilde i^\ast \;\colon\; \tilde E^2(B U(1)) \longrightarrow \tilde E^2(S^2) \simeq \tilde E^0(S^0) \,. \end{displaymath} If so, then a choice of pre-image $c^E_1 \in E^2(B U(1))$ is a choice of \emph{complex orientation} (\href{complex+oriented+cohomology+theory#ComplexOrientedCohomologyTheory}{this def.}). Now for $E = K_{\mathbb{C}}$ being complex topological K-theory regarded as a generalized cohomology theory as \hyperlink{AsAGeneralizedCohomologyTheory}{above}, then by [[Bott periodicity]] (prop. \ref{BottPeriodicity}) and by $\tilde K_{\mathbb{Z}}(S^2) \simeq \mathbb{Z} \cdot (h-1)$ (example \ref{ComplexTopologicalKTheoryOfTheCircle}) this reduces to the statement that there is an element $c^K_1 \in \tilde K_{\mathbb{C}}(B U(1))$ such that its image under \begin{displaymath} \tilde i^\ast \;\colon\; \tilde K_{\mathbb{C}}(B U(1)) \longrightarrow \tilde K_{\mathbb{C}}(S^2) \simeq \mathbb{Z} \cdot (h-1) \end{displaymath} is the [[Bott element]] $h-1$, the [[virtual vector bundle]] difference between the [[basic complex line bundle on the 2-sphere]] and the [[trivial vector bundle|trivial]] [[complex line bundle]]. By the very nature of the [[basic complex line bundle on the 2-sphere]] $h$, it is the restriction of the [[universal complex line bundle]] $\mathcal{O}(1)$ on $B U(1) \simeq \mathbb{C}P^\infty$ along the defining cell inclusion $i \colon S^2 \hookrightarrow \mathbb{C}P^\infty \simeq B U(1)$. Hence if we set \begin{displaymath} c_K^1 \;\coloneqq\; \mathcal{O}(1)-1 \; \in \tilde K_{\mathbb{C}}(B U(1)) \end{displaymath} then this is a [[complex oriented cohomology|complex orientation]] for complex topological K-theory. From this we obtain the [[formal group law]] associated with topological K-theory (from \href{complex+oriented+cohomology+theory#ComplexOrientedCohomologyTheoryFormalGroupLaw}{this prop.}): By the nature of the [[classifying space]] $B U(1)$ we have that for \begin{displaymath} \mu \;\colon\; B U(1) \times B U(1) \longrightarrow B U(1) \end{displaymath} the group product operation, which classifies the [[tensor product of vector bundles|tensor product of line bundles]], that \begin{displaymath} \mu^\ast \mathcal{O}(1) \simeq pr_1^\ast \mathcal{O}(1) \otimes_{B U(1)} pr_2^\ast \mathcal{O}(1) \,, \end{displaymath} where \begin{displaymath} pr_i\colon B U(1) \times B U(1) \to B U(1) \end{displaymath} are the two [[projections]] out of the [[Cartesian product]]. Hence \begin{displaymath} \begin{aligned} \mu^\ast c_1^K &\coloneqq \mu^\ast (\mathcal{O}(1) - 1) \\ & = \left(pr_1^\ast \mathcal{O}(1)\right) \cdot \left(pr_2^\ast \mathcal{O}(1)\right) - 1 \\ & = \left(pr_1^\ast (\mathcal{O}(1) -1)\right) \cdot \left(pr_2^\ast( \mathcal{O}(1) -1)\right) + pr_1^\ast \mathcal{O}(1) + pr_2^\ast \mathcal{O}(2) - 2 \\ & = \left(pr_1^\ast (\mathcal{O}(1) -1)\right) \cdot \left(pr_2^\ast( \mathcal{O}(1) -1)\right) + \left(pr_1^\ast \mathcal{O}(1) - 1\right) + \left(pr_2^\ast \mathcal{O}(1) - 1\right) \end{aligned} \end{displaymath} This shows that the [[formal group law]] associated with the complex orientation of complex topological K-theory is that of the \emph{[[formal multiplicative group]]} given by \begin{displaymath} f(x,y) = x + y + x y \,. \end{displaymath} \hypertarget{spectrum}{}\subsubsection*{{Spectrum}}\label{spectrum} Being a [[generalized (Eilenberg-Steenrod) cohomology]] theory, topological K-theory is represented by a [[spectrum]]: the \emph{[[K-theory spectrum]]}. e.g. \hyperlink{Switzer75}{Switzer 75, p. 216} The degree-0 part of this spectrum, i.e. the classifying space for degree 0 topological $K$-theory is modeled in particular by the space $Fred$ of [[Fredholm operator]]s. \hypertarget{ring_spectrum}{}\subsubsection*{{Ring spectrum}}\label{ring_spectrum} This [[K-theory]] spectrum has the structure of a [[ring spectrum]] (e.g. \hyperlink{Switzer75}{Switzer 75, section 13.90, around p. 300}, see also p. 205 (213 of 251) in \emph{[[A Concise Course in Algebraic Topology]]}) (\ldots{}) \hypertarget{chromatic_filtration}{}\subsubsection*{{Chromatic filtration}}\label{chromatic_filtration} [[!include chromatic tower examples - table]] \hypertarget{as_the_shape_of_the_smooth_ktheory_spectrum}{}\subsubsection*{{As the shape of the smooth K-theory spectrum}}\label{as_the_shape_of_the_smooth_ktheory_spectrum} See at \emph{[[differential cohomology diagram]]}. \hypertarget{RelationToAlgebraicKTheory}{}\subsubsection*{{Relation to algebraic K-theory}}\label{RelationToAlgebraicKTheory} The topological K-theory over a space $X$ is not identical with the \emph{[[algebraic K-theory]]} of the ring of functions on $X$, but the two are closely related. See for instance (\hyperlink{Paluch}{Paluch}, \hyperlink{Rosenberg}{Rosenberg}). See at \emph{[[comparison map between algebraic and topological K-theory]]}. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[virtual vector bundle]] \item [[K-theory]] \item \textbf{topological K-theory} \begin{itemize}% \item [[Atiyah-Bott-Shapiro isomorphism]] \item [[topological index]] \item [[KR-theory]] \item [[vectorial bundle]] \end{itemize} \item [[groupoid K-theory]] \item [[twisted K-theory]] \item [[differential K-theory]] \item [[twisted differential K-theory]] \item [[semi-topological K-theory]] \item [[algebraic K-theory]] \end{itemize} [[!include orientations in higher quantization - table]] [[!include string theory and cohomology theory -- table]] \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The ``ring of complex vector bundles'' $K(X)$ was introduced in \begin{itemize}% \item [[M. F. Atiyah]], [[F. Hirzebruch]], \emph{Riemann-Roch theorems for differentiable manifolds}, Bull. Amer. Math Soc. vol. 65 (1959) pp. 276-281. \end{itemize} and shown to give a [[generalized (Eilenberg-Steenrod) cohomology]] theory in \begin{itemize}% \item [[M. F. Atiyah]], [[F. Hirzebruch]], \emph{Vector bundles and homogeneous spaces}, 1961, Proc. Sympos. Pure Math., Vol. III pp. 7--38 American Mathematical Society, Providence, R.I. (\href{http://hirzebruch.mpim-bonn.mpg.de/87/}{web}, \href{http://www.ams.org/mathscinet-getitem?mr=0139181}{MR 0139181}) \end{itemize} Representable K-theory over non-compact spaces was considered in \begin{itemize}% \item [[Max Karoubi]], \emph{Espaces Classifiants en K-Th\'e{}orie}, Transactions of the American Mathematical Society Vol. 147, No. 1 (Jan., 1970), pp. 75-115 (\href{http://www.jstor.org/stable/1995218}{jstor}) \end{itemize} and (over [[classifying spaces]] in the context of [[equivariant K-theory]]) in \begin{itemize}% \item [[Graeme Segal]], [[Michael Atiyah]], section 4 of \emph{Equivariant K-theory and completion}, J. Differential Geometry 3 (1969), 1--18. MR 0259946 (41 \#4575 \end{itemize} Early lecture notes on topological K-theory in a general context of [[stable homotopy theory]] and [[generalized cohomology theory]] includes \begin{itemize}% \item [[Frank Adams]], part III, section 2 of \emph{[[Stable homotopy and generalised homology]]}, 1974 \end{itemize} Textbook accounts on topological K-theory include \begin{itemize}% \item [[M. F. Atiyah]], \emph{K-theory}, Benjamin New-York, 1967, (\href{http://www.maths.ed.ac.uk/~aar/papers/atiyahk.pdf}{pdf}) \item [[Robert Switzer]], sections 11 and 13.90 of \emph{Algebraic Topology - Homotopy and Homology}, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen, Vol. 212, Springer-Verlag, New York, N. Y., 1975. \item [[Max Karoubi]], \emph{K-theory: an introduction}, Grundlehren der Math. Wissen. 226 Springer 1978, Reprinted in Classics in Mathematics (2008) \item [[Allen Hatcher]], \emph{Vector bundles and K-theory}, 2003/2009 (\href{http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html}{web}) \end{itemize} Further introductions include \begin{itemize}% \item [[H. Blaine Lawson]], [[Marie-Louise Michelsohn]], \emph{[[Spin geometry]]}, Princeton University Press (1989) \item Marcelo Aguilar, [[Samuel Gitler]], Carlos Prieto, section 9 of \emph{Algebraic topology from a homotopical viewpoint}, Springer (2002) (\href{http://tocs.ulb.tu-darmstadt.de/106999419.pdf}{toc pdf}) \item [[Max Karoubi]], \emph{K-theory. An elementary introduction}, lectures given at the Clay Mathematics Academy (\href{https://arxiv.org/abs/math/0602082}{arXiv:math/0602082}) \item [[Eric Friedlander]], \emph{An introduction to K-theory} (emphasis on [[algebraic K-theory]]), 2007 (\href{http://users.ictp.it/~pub_off/lectures/lns023/Friedlander/Friedlander.pdf}{pdf}) \item [[Varvara Karpova]], \emph{Complex topological K-theory}, 2009 (\href{http://infoscience.epfl.ch/record/162450/files/karpova.semestre.hess2.pdf}{pdf}) \item Chris Blair, \emph{Some K-theory examples}, 2009 (\href{http://www.maths.tcd.ie/~cblair/notes/kex.pdf}{pdf}) \item [[Klaus Wirthmüller]], \emph{Vector bundles and K-theory}, 2012 (\href{ftp://www.mathematik.uni-kl.de/pub/scripts/wirthm/Top/vbkt_skript.pdf}{pdf}) \item Aderemi Kuku, \emph{Introduction to K-theory and some applications} (\href{https://www.math.ksu.edu/~zlin/kuku/Intro-Kthy.pdf}{pdf}) \end{itemize} A textbook account of topological K-theory with an eye towards [[operator K-theory]] is section 1 of \begin{itemize}% \item [[Bruce Blackadar]], \emph{[[K-Theory for Operator Algebras]]} \end{itemize} The [[comparison map between algebraic and topological K-theory]] is discussed for instance in \begin{itemize}% \item Michael Paluch, \emph{Algebraic $K$-theory and topological spaces} K-theory 0471 (\href{http://www.math.uiuc.edu/K-theory/0471/}{web}) \item [[Jonathan Rosenberg]], \emph{Comparison Between Algebraic and Topological K-Theory for Banach Algebras and $C^*$-Algebras}, (\href{http://www2.math.umd.edu/~jmr/algtopK.pdf}{pdf}) \end{itemize} Discussion from the point of view of [[smooth stacks]] and [[differential K-theory]] is in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], [[Michael Völkl]], \emph{Differential cohomology theories as sheaves of spectra}, Journal of Homotopy and Related Structures October 2014 (\href{http://arxiv.org/abs/1311.3188}{arXiv:1311.3188}) \end{itemize} The proof of the [[Hopf invariant one]] theorem in terms of topological K-theory is due to \begin{itemize}% \item [[Frank Adams]], [[Michael Atiyah]], \emph{K-theory and the Hopf invariant}, Quart. J. Math. Oxford (2), 17 (1966), 31-38 (\href{http://www.maths.ed.ac.uk/~aar/papers/adamatiy.pdf}{pdf}) \end{itemize} \hypertarget{for_noncompact_spaces_2}{}\subsubsection*{{For non-compact spaces}}\label{for_noncompact_spaces_2} Topological K-theory of [[Eilenberg-MacLane spaces]] is discussed in \begin{itemize}% \item D.W. Anderson, Luke Hodgkin \emph{The K-theory of Eilenberg-Maclane complexes}, Topology, Volume 7, Issue 3, August 1968, Pages 317-329 (\href{https://doi.org/10.1016/0040-9383(68}{doi:10.1016/0040-9383(68)90009-8}90009-8)) \end{itemize} Topological topological K-theory of [[classifying spaces]] of [[Lie groups]] is in \begin{itemize}% \item Stefan Jackowski and Bob Oliver, \emph{Vector bundles over classifying spaces of compact Lie groups} (\href{http://hopf.math.purdue.edu/Jackowski-Oliver/bg-bu.pdf}{pdf}) \end{itemize} \hypertarget{dbrane_charge}{}\subsubsection*{{D-brane charge}}\label{dbrane_charge} Discussion of [[twisted K-theory|twisted]] [[differential K-theory|differential]] [[topological K-theory|K-theory]] and its relation to [[D-brane charge]] in [[type II string theory]] (see also \href{D-brane#ReferencesKTheoryDescription}{there}): \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Ramond-Ramond fields and twisted differential K-theory} (\href{https://arxiv.org/abs/1903.08843}{arXiv:1903.08843}) \end{itemize} Discussion of [[twisted K-theory|twisted]] [[differential K-theory|differential]] [[KO-theory|orthogonal]] [[topological K-theory|K-theory]] and its relation to [[D-brane charge]] in [[type I string theory]] (on [[orientifolds]]): \begin{itemize}% \item Daniel Grady, [[Hisham Sati]], \emph{Twisted differential KO-theory} (\href{https://arxiv.org/abs/1905.09085}{arXiv:1905.09085}) \end{itemize} [[!redirects complex K-theory]] [[!redirects periodic complex K-theory]] [[!redirects complex topological K-theory]] \end{document}