\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological T-duality} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{string_theory}{}\paragraph*{{String theory}}\label{string_theory} [[!include string theory - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} Recall that \emph{geometric} [[T-duality]] is an operation acting on tuples roughly consisting of \begin{itemize}% \item a [[smooth manifold]] $X$ with the structure of a torus-[[principal bundle]] $T^n \to X \to X/T^n$ -- modelling [[spacetime]] \item equipped with a [[circle n-bundle with connection|circle 2-bundle with connection]] -- modelling the [[Kalb-Ramond field]] \item and in [[twisted K-theory]] refined to elements in [[differential K-theory|differential twisted K-theory]] -- modelling the [[RR-field]] \item and notably equipped with a (pseudo)[[Riemannian metric]] -- modelling the field of [[gravity]]. \end{itemize} The idea of \textbf{topological T-duality} (due to \hyperlink{BouwknegtEvslinMathai04}{Bouwknegt-Evslin-Mathai 04}, \hyperlink{BouwknegtHannabusMathai04}{Bouwknegt-Hannabus-Mathai 04}) is to disregard the [[Riemannian metric]] and the connection and study the remaining ``topological'' structure. While the idea of [[T-duality]] originates in [[string theory]], topological T-duality has become a field of study in pure mathematics in its own right. In the language of [[bi-brane]]s a topological T-duality transformation is a bi-brane of a special kind between the two gerbes involved. The induced [[integral transform]] (on sheaves of sections of, or K-classes of) (twisted) vector bundles is essentially the [[Fourier-Mukai transformation]]. More on the bi-brane interpretation of (topological and non-topological) T-duality is in (\hyperlink{SarkissianSchweigert08}{Sarkissian-Schweigert 08}). \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Two tuples $(X_i \to B, G_i)_{i = 1,2}$ consisting of a $T^n$-bundle $X_i$ over a manifold $B$ and a line [[bundle gerbe]] $G_i \to X_i$ over $X$ are \textbf{topological T-duals} if there exists an isomorphism $u$ of the two [[bundle gerbes]] pulled back to the [[fiber product]] [[correspondence]] space $X_1 \times_B X_2$: \begin{displaymath} \itexarray{ && pr_1^* G_1 && \stackrel{u}{\leftarrow} && pr_2^* G_2 \\ & \swarrow && \searrow && \swarrow && \searrow \\ G_1 &&&& X_1 \times_B X_2 &&&& G_2 \\ & \searrow && \swarrow && \searrow && \swarrow \\ && X_1 &&&& X_2 \\ &&& \searrow && \swarrow \\ &&&& B } \end{displaymath} of a certain prescribed [[integral transform]]-form (\hyperlink{BunkeRumpfSchick08}{Bunke-Rumpf-Schick 08, p. 9})). \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[T-duality]] \begin{itemize}% \item \textbf{topological T-duality} \item [[differential T-duality]] \item [[T-duality 2-group]] \end{itemize} \item [[spherical T-duality]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} The concept was introduced on the level of differential form data in \begin{itemize}% \item [[Peter Bouwknegt]], [[Jarah Evslin]], [[Varghese Mathai]], \emph{T-Duality: Topology Change from H-flux}, Commun. Math. Phys. 249:383-415, 2004 (\href{http://arxiv.org/abs/hep-th/0306062}{hep-th/0306062}) \item [[Peter Bouwknegt]], [[Keith Hannabus]], [[Varghese Mathai]], \emph{T-duality for principal torus bundles}, JHEP 0403 (2004) 018 (\href{http://arxiv.org/abs/hep-th/0312284}{hep-th/0312284}) \end{itemize} In these papers the $U(1)$-[[gerbe]] ([[circle 2-bundle with connection]]) does not appear, but an integral [[differential 3-form]], representing its [[Dixmier-Douady class]] does. Note that if the [[Eilenberg-MacLane spectrum|integral]] [[cohomology group]] $H^3(X,\mathbb{Z})$ of $X$ has [[torsion]] in dimension three, not all gerbes will arise in this way. The formalization with the above data originates in \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Schick]], \emph{On the topology of T-duality}, Rev.Math.Phys.17:77-112,2005, (\href{https://arxiv.org/abs/math/0405132}{arXiv:math/0405132}) \item [[Ulrich Bunke|U. Bunke]], P. Rumpf, [[Thomas Schick]], \emph{The topology of $T$-duality for $T^n$-bundles}, Rev. Math. Phys. 18, 1103 (2006). (\href{http://arxiv.org/abs/math.GT/0501487}{arXiv:math.GT/0501487}) \item [[Ulrich Bunke]], [[Markus Spitzweck]], [[Thomas Schick]], \emph{Periodic twisted cohomology and T-duality}, Ast\'e{}risque No. 337 (2011), vi+134 pp. ISBN: 978-2-85629-307-2 \end{itemize} A refined version of this using [[smooth stacks]] is due to \begin{itemize}% \item [[Ulrich Bunke]], [[Thomas Nikolaus]], \emph{T-Duality via Gerby Geometry and Reductions} (\href{http://arxiv.org/abs/1305.6050}{arXiv:1305.6050}) \item [[Thomas Nikolaus]], \emph{[[T-Duality in K-theory and Elliptic Cohomology]]}, talk at \emph{String Geometry Network Meeting}, Feb 2014, ESI Vienna (\href{http://www.ingvet.kau.se/juerfuch/conf/esi14/esi14_34.html}{website}) \end{itemize} There is also [[C\emph{-algebra|C}-algebraic]] version of toplogical T-duality, .e. in [[noncommutative topology]], which sees also topological T-duals in [[non-commutative geometry]]: \begin{itemize}% \item [[Varghese Mathai]], [[Jonathan Rosenberg]], \emph{T-Duality for Torus Bundles with H-Fluxes via Noncommutative Topology} (\href{http://arxiv.org/abs/hep-th/0401168}{arXiv:hep-th/0401168}) \end{itemize} The equivalence of the [[C\emph{-algebra|C}-algebraic]] to the Bunke-Schick version, when the latter exists, is discussed in \begin{itemize}% \item Ansgar Schneider, \emph{Die lokale Struktur von T-Dualitn\"a{}tstripeln} (\href{https://arxiv.org/abs/0712.0260}{arXiv:0712.0260}) \end{itemize} Jonathan Rosenberg has also written a little introductory book for mathematicians: \begin{itemize}% \item [[Jonathan Rosenberg]], \emph{Topology, $C^*$-algebras, and string duality} (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:05632075&type=pdf&format=complete}{ZMATH}) \end{itemize} Another discussion that instead of [[noncommutative geometry]] uses [[topological groupoids]] is in \begin{itemize}% \item Calder Daenzer, \emph{A groupoid approach to noncommutative T-duality} (\href{http://arxiv.org/abs/0704.2592}{arXiv:0704.2592}) \end{itemize} The [[bi-brane]] perspective on T-duality is amplified in \begin{itemize}% \item Gor Sarkissian, [[Christoph Schweigert]], \emph{Some remarks on defects and duality} (\href{http://arxiv.org /abs/0810.3159}{arXiv:0810.3159}) \end{itemize} Discussion for non-free torus actions (physically: [[KK-monopoles]]) is in \begin{itemize}% \item Ashwin S. Pande, \emph{Topological T-duality and Kaluza-Klein Monopoles}, Adv. Theor. Math. Phys., 12, (2007), pp 185-215 (\href{https://arxiv.org/abs/math-ph/0612034}{arXiv:math-ph/0612034}) \end{itemize} Discussion in [[rational homotopy theory]]/[[dg-geometry]] is in \begin{itemize}% \item [[Ernesto Lupercio]], Camilo Rengifo, [[Bernardo Uribe]], \emph{T-duality and exceptional generalized geometry through symmetries of dg-manifolds} (\href{https://arxiv.org/abs/1208.6048}{arXiv:1208.6048}) \end{itemize} and a derivation of the rules of topological T-duality from analysis of the [[super p-brane]] super-cocycles in super rational homotopy theory (with a [[doubled supergeometry]]) is given in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:T-Duality from super Lie n-algebra cocycles for super p-branes]]}, \href{http://www.intlpress.com/site/pub/pages/journals/items/atmp/content/vols/0022/0005/}{ATMP Volume 22 (2018) Number 5} (\href{https://arxiv.org/abs/1611.06536}{arXiv:1611.06536}, \href{https://dx.doi.org/10.4310/ATMP.2018.v22.n5.a3}{doi:10.4310/ATMP.2018.v22.n5.a3}) \end{itemize} reviewed in \begin{itemize}% \item [[Domenico Fiorenza]], [[Hisham Sati]], [[Urs Schreiber]], \emph{[[schreiber:T-duality in rational homotopy theory via strong homomotopy Lie algebras]]}, \href{http://geo-top.org/GTMP/index.php/volume-1-2018/}{Geometry, Topology and Mathematical Physics Journal, Volume 1 (2018)} (\href{https://arxiv.org/abs/1712.00758}{arXiv:1712.00758}) \item [[Domenico Fiorenza]], \emph{T-duality in rational homotopy theory}, talk at \emph{\href{http://conference.math.muni.cz/srni/files/archiv/2018/}{38th Srni Winter School on Geometry and Physics}}, 2018 ([[FiorenzaSrni2018.pdf:file]]) \end{itemize} The refinement of topological T-duality to [[differential cohomology]], hence to an operation on the [[differential K-theory]] classes that model the [[RR-field]] is in \begin{itemize}% \item [[Alexander Kahle]], [[Alessandro Valentino]], \emph{[[T-Duality and Differential K-Theory]]}, Communications in Contemporary Mathematics, Volume 16, Issue 02, April 2014 (\href{http://arxiv.org/abs/0912.2516}{arXiv:0912.2516}) \end{itemize} \end{document}