\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological base} \begin{quote}% This page discusses bases for the topology on [[topological spaces]]. For the concept of topological [[linear basis]] see at \emph{[[basis in functional analysis]]}. For bases on [[sites]], that is for [[Grothendieck topologies]], see at \emph{[[Grothendieck pretopology]]}. \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{ForTopologicalSpaces}{Definition}\dotfill \pageref*{ForTopologicalSpaces} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{generation}{Generating topologies}\dotfill \pageref*{generation} \linebreak \noindent\hyperlink{ForSites}{Relation to Grothendieck topologies and coverages}\dotfill \pageref*{ForSites} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{base} or \emph{subbase} for a [[topological space]] is a way of generating its topology from something simpler. This is the application to topology of the general concept of [[base]]. \hypertarget{ForTopologicalSpaces}{}\subsection*{{Definition}}\label{ForTopologicalSpaces} Let $X$ be a [[topological space]], and let $\tau$ be its collection of [[open subsets]] (its `topology'). \begin{defn} \label{}\hypertarget{}{} A \textbf{base} or \textbf{basis} for (or ``of'') $X$ (or $\tau$) is a [[subset|collection]] $B \subset \tau$ -- whose members are called \textbf{basic open subsets} or \textbf{generating open subsets} -- such that every open subset is a [[union]] of basic ones. \end{defn} \begin{defn} \label{}\hypertarget{}{} A \textbf{subbase} for (or ``of'') $X$ (or $\tau$) is a subcollection $S \subset \tau$ -- whose members are called \textbf{subbasic open subsets} -- such that every open subset is a [[union]] of [[finitary intersections]] of subbasic ones. \end{defn} If only the [[underlying set]] of $X$ is given, then a \textbf{base} or \textbf{subbase} on this [[set]] is any collection of [[subsets]] of $X$ that is a base or subbase for \emph{some} topology on $X$. See \hyperlink{generation}{below} for a characterisation of which collections these can be. Now fix a [[point]] $a$ in $X$. \begin{defn} \label{}\hypertarget{}{} A \textbf{local base} or \textbf{base of neighborhoods} or \textbf{fundamental system of neighborhoods} for (or ``of'') $X$ (or $\tau$) at $a$ is a subcollection $B \subset \tau$ -- whose members are called \textbf{basic neighborhoods} or \textbf{generating neighborhoods} of $a$ -- such that every basic neighborhood of $a$ is a [[neighborhood]] and every neighborhood of $a$ is a [[superset]] of some basic neighborhood. \end{defn} We may also allow basic neighborhoods to be non-open, but this really doesn't make any difference; any local base may be refined to a local base of open neighborhoods, and most local bases in practices already come that way. A \textbf{local subbase} at $a$ is a family of neighbourhoods $a$ such that each neighbourhood of $a$ contains a finite [[intersection]] of elements of the family. \begin{defn} \label{}\hypertarget{}{} The minimum [[cardinality]] of a base of $X$ is the \textbf{weight} of $X$. The minimum cardinality of a base of neighborhoods at $a$ is the \textbf{character} of $X$ at $a$. The [[supremum]] of the characters at all points of $X$ is the \textbf{character} of $X$. \end{defn} We have assumed the [[axiom of choice]] to simplify the description of this concept; but in general one must speak of classes of cardinalities rather than individual cardinalities. If the character of $X$ is [[countable set|countable]], we say that $X$ satisfies the [[first-countable space|first axiom of countability]]; if the weight is countable, we say that $X$ satisfies the [[second-countable space|second axiom of countability]]. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{example} \label{}\hypertarget{}{} For the [[discrete topology]] on a set $X$, the collection of all [[singleton]] subsets is a base, and the singleton $\{x\}$ is a local base at $x$. Thus every discrete space is first-countable, but only [[countable set|countable]] discrete spaces are second-countable. \end{example} \begin{example} \label{}\hypertarget{}{} For every [[metric space]], in particular every [[paracompact space|paracompact]] [[Riemannian manifold]], the collection of [[open subsets]] that are [[open balls]] forms a base for the topology. (For instance, a base for the topology on the [[real line]] is given by the collection of open intervals $(a,b) \subset \mathbb{R}$.) Similarly, the collection of open balls containing a given point is a local basis at that point. \end{example} \begin{remark} \label{}\hypertarget{}{} This means that [[covering]] families consisting of such \emph{basic} open subsets are [[good open covers]]. \end{remark} \begin{example} \label{}\hypertarget{}{} Refining the previous example, every [[metric space]] has a basis consisting of the [[open balls]] with \emph{[[rational number|rational]]} radius. (For instance, a base for the topology on the [[real line]] is given by the collection of open intervals $(a,b) \subset \mathbb{R}$ where $b - a$ is rational.) Similarly, the collection of open balls with rational radius containing a given point is a local base at that point. Therefore, every metric space is first-countable. \end{example} \begin{example} \label{}\hypertarget{}{} Now consider a [[separable space|separable]] metric space; that is, we have a [[dense subset]] $D$ which is [[countable set|countable]]. Now the space has a basis consisting of the [[open balls]] with [[rational number|rational]] radius and centres in $D$. (For instance, a base for the topology on the [[real line]] is given by the collection of open intervals $(a,b) \subset \mathbb{R}$ where $a$ and $b$ are rational.) Therefore, every separable metric space is second-countable. \end{example} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{generation}{}\subsubsection*{{Generating topologies}}\label{generation} Let $X$ be simply a [[set]]. \begin{prop} \label{Recognition}\hypertarget{Recognition}{} \textbf{(recognition of topological bases)} A collection $B$ of [[subsets]] of $X$ is a base for \emph{some} topology on $X$ iff these conditions are met: \begin{itemize}% \item The elements of $B$ cover $X$; \item For any $U, V \in B$ and any point $x \in U \cap V$ there is a $W \in B$ such that $W \subseteq U \cap V$ and $x \in W$. \end{itemize} \end{prop} These conditions amount to saying that for each $x\in X$, the subcollection of those $U\in B$ such that $x\in U$ is a base for a [[filter]] on $X$ (which is then the [[neighborhood]] filter of $x$) --- in other words, that these subcollections are ``colaxly closed'' under finite intersections. \begin{prop} \label{}\hypertarget{}{} \emph{Every} collection $S$ of subsets of $X$ is a subbase for some topology on $X$. \end{prop} A subbase naturally generates a base (for the same topology) by [[Moore closure|closing]] it under finitary intersections. (The resulting base will actually be closed under intersection.) \hypertarget{ForSites}{}\subsubsection*{{Relation to Grothendieck topologies and coverages}}\label{ForSites} If one thinks of the topology on $X$ as being encoded in the standard [[Grothendieck topology]] that it induces on its [[category of open subsets]] $Op(X)$, then a base for the topology induces a \emph{[[coverage]]} on $Op(X)$, whose covering families are the open covers by basic open subsets, which generates this Grothendieck topology. This coverage is \emph{not} in general a [[basis for the Grothendieck topology]], because a base for a topological space is in general not closed under [[intersection]] with arbitrary [[open subsets]]; a coverage is only a basis if is stable under [[pullback]] (here, closed under these intersections) and transitive. Unfortunately the established terminology ``basis'' in [[topology]] and [[topos theory]] is not quite consistent with the inclusion of topological spaces into topos theory: ``basis'' in topology corresponds to ``coverage'' in topos theory, not to ``basis'' in topos theory. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[neighbourhood base]] \end{itemize} [[!redirects base for a topology]] [[!redirects basis for a topology]] [[!redirects bases for a topology]] [[!redirects bases for topologies]] [[!redirects base of a topology]] [[!redirects basis of a topology]] [[!redirects bases of a topology]] [[!redirects bases of topologies]] [[!redirects topological basis]] [[!redirects topological basises]] [[!redirects base for a topological space]] [[!redirects basis for a topological space]] [[!redirects bases for a topological space]] [[!redirects bases for topological spaces]] [[!redirects base of a topological space]] [[!redirects basis of a topological space]] [[!redirects bases of a topological space]] [[!redirects bases of topological spaces]] [[!redirects topological base]] [[!redirects topological bases]] [[!redirects base for the topology]] [[!redirects basis for the topology]] [[!redirects bases for the topology]] [[!redirects base of the topology]] [[!redirects basis of the topology]] [[!redirects bases of the topology]] [[!redirects base for its topology]] [[!redirects basis for its topology]] [[!redirects bases for its topology]] [[!redirects base of its topology]] [[!redirects basis of its topology]] [[!redirects bases of its topology]] [[!redirects subbase for a topology]] [[!redirects subbasis for a topology]] [[!redirects sub-basis for a topology]] [[!redirects sub-bases for a topology]] [[!redirects sub-base of a topology]] [[!redirects sub-bases of a topology]] [[!redirects subbases for a topology]] [[!redirects subbases for topologies]] [[!redirects subbase of a topology]] [[!redirects subbasis of a topology]] [[!redirects subbases of a topology]] [[!redirects subbases of topologies]] [[!redirects subbase for a topological space]] [[!redirects subbasis for a topological space]] [[!redirects subbases for a topological space]] [[!redirects subbases for topological spaces]] [[!redirects subbase of a topological space]] [[!redirects subbasis of a topological space]] [[!redirects subbases of a topological space]] [[!redirects subbases of topological spaces]] [[!redirects topological subbase]] [[!redirects topological subbases]] [[!redirects subbase for the topology]] [[!redirects subbasis for the topology]] [[!redirects subbases for the topology]] [[!redirects local base]] [[!redirects local basis]] [[!redirects local bases]] [[!redirects base of neighborhoods]] [[!redirects basis of neighborhoods]] [[!redirects bases of neighborhoods]] [[!redirects base of neighbourhoods]] [[!redirects basis of neighbourhoods]] [[!redirects bases of neighbourhoods]] [[!redirects fundamental system of neighborhoods]] [[!redirects fundamental systems of neighborhoods]] [[!redirects fundamental system of neighbourhoods]] [[!redirects fundamental systems of neighbourhoods]] [[!redirects sub-base for a topology]] [[!redirects sub-bases for a topology]] \end{document}