\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological cofiber sequence} \begin{quote}% under construction \end{quote} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{homotopy_theory}{}\paragraph*{{Homotopy theory}}\label{homotopy_theory} [[!include homotopy - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{background}{Background}\dotfill \pageref*{background} \linebreak \noindent\hyperlink{homotopy_equivalences}{Homotopy equivalences}\dotfill \pageref*{homotopy_equivalences} \linebreak \noindent\hyperlink{cofibrations}{Cofibrations}\dotfill \pageref*{cofibrations} \linebreak \noindent\hyperlink{pushouts__space_attachments}{Pushouts / space attachments}\dotfill \pageref*{pushouts__space_attachments} \linebreak \noindent\hyperlink{mapping_cones}{Mapping cones}\dotfill \pageref*{mapping_cones} \linebreak \noindent\hyperlink{CofiberSequences}{Cofiber sequences}\dotfill \pageref*{CofiberSequences} \linebreak \noindent\hyperlink{pointed_cofiber_sequence}{Pointed cofiber sequence}\dotfill \pageref*{pointed_cofiber_sequence} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} We discuss in detail the realization of the abstract concept of [[cofiber sequences]] in its explicit incarnation in [[point-set topology]], the way it is traditionally presented in [[topology]] textbooks. Hence we use the concepts of [[homotopy equivalence]] instead of [[weak homotopy equivalence]]. For discussion using the latter in the context of the [[classical model structure on topological spaces]] see instead at \emph{[[Introduction to Homotopy Theory]]} the section \emph{\href{Introduction+to+Homotopy+Theory#HomotopyFiberSequences}{Homotopy fiber sequences}}. \hypertarget{background}{}\subsection*{{Background}}\label{background} Throughout, write $I \coloneqq [0,1] \subset \mathbb{R}$ for the [[closed interval]] equipped with its [[Euclidean space|Euclidean]] [[metric topology]]. \hypertarget{homotopy_equivalences}{}\subsubsection*{{Homotopy equivalences}}\label{homotopy_equivalences} \begin{defn} \label{LeftHomotopy}\hypertarget{LeftHomotopy}{} For $f,g\colon X \longrightarrow Y$ two [[continuous functions]] between [[topological spaces]] $X,Y$, then a \textbf{[[homotopy]]} \begin{displaymath} \eta \colon f \,\Rightarrow_L\, g \end{displaymath} is a [[continuous function]] \begin{displaymath} \eta \;\colon\; X \times I \longrightarrow Y \end{displaymath} out of the standard [[cylinder object]] over $X$: the [[product space]] of $X$ with the [[Euclidean space|Euclidean]] [[closed interval]], such that this fits into a [[commuting diagram]] of the form \begin{displaymath} \itexarray{ X \\ {}^{\mathllap{(id,\delta_0)}}\downarrow & \searrow^{\mathrlap{f}} \\ X \times I &\stackrel{\eta}{\longrightarrow}& Y \\ {}^{\mathllap{(id,\delta_1)}}\uparrow & \nearrow_{\mathrlap{g}} \\ X } \,. \end{displaymath} (graphics grabbed from J. Tauber \href{http://jtauber.com/blog/2005/07/01/path_homotopy/}{here}) \end{defn} \begin{defn} \label{HomotopyEquivalence}\hypertarget{HomotopyEquivalence}{} \textbf{([[homotopy equivalence]])} A [[continuous function]] $f \colon X \to Y$ is called a \emph{[[homotopy equivalence]]} if there exist \begin{enumerate}% \item a continuous function $g \colon Y \to X$; \item homotopies (def. \ref{LeftHomotopy}) of the form $g \circ f \Rightarrow id_X \phantom{AAAA} f \circ g \Rightarrow id_Y$ \end{enumerate} \end{defn} \begin{example} \label{ContractibleTopologicalSpace}\hypertarget{ContractibleTopologicalSpace}{} \textbf{([[contractible topological space]])} A [[topological space]] $X$ is called \emph{[[contractible topological space|contractible]]} if the unique map to the [[point space]] $X \to \ast$ is a [[homotopy equivalence]] (def. \ref{HomotopyEquivalence}). \end{example} \hypertarget{cofibrations}{}\subsubsection*{{Cofibrations}}\label{cofibrations} \begin{defn} \label{HurewiczCofibration}\hypertarget{HurewiczCofibration}{} \textbf{([[Hurewicz cofibration]])} A [[continuous function]] $i \colon A \longrightarrow X$ is called a \emph{[[Hurewicz cofibration]]} or just \emph{cofibration} if it satisfies the [[homotopy extension property]] in that: \begin{itemize}% \item for any [[topological space]] $Y$, \item for all continuous functions $f \colon A\to Y$, $\tilde{f}:X\to Y$ such that $\tilde{f}\circ i=f$ \begin{displaymath} \itexarray{ A &\stackrel{f}{\to}& Y \\ {}^{\mathllap{i}}\downarrow & \nearrow_{\mathrlap{\tilde f}} \\ X } \end{displaymath} \item and any [[left homotopy]] $F \colon A\times I\to Y$ such that $F(-,0)=f$ \end{itemize} there is a homotopy $\tilde{F} \colon X\times I\to Y$ such that \begin{itemize}% \item $\tilde{F}\circ(i\times id_I)=F$ \begin{displaymath} \itexarray{ A \times I &\overset{F}{\longrightarrow}& Y \\ {}^{\mathllap{i \times id_I}}\downarrow & \nearrow_{\mathrlap{\tilde F}} \\ X \times I } \end{displaymath} \item and $\tilde{F}(-,0)=\tilde{f}$ \begin{displaymath} \itexarray{ A &\overset{id_A \times const_0}{\longrightarrow}& A \times I &\overset{F}{\longrightarrow}& Y \\ {}^{\mathllap{i \times id_I}}\downarrow && {}^{\mathllap{i \times id_I}}\downarrow & \nearrow_{\mathrlap{\tilde F}} \\ X &\underset{id_X \times const_0}{\longrightarrow}& X \times I } \phantom{AAA} = \phantom{AAA} \itexarray{ \itexarray{ A &\stackrel{f}{\to}& Y \\ {}^{\mathllap{i}}\downarrow & \nearrow_{\mathrlap{\tilde f}} \\ X }cco } \end{displaymath} \end{itemize} If the [[image]] $i(A) \subset X$ is a [[closed subset]], then $i$ is called a \emph{[[closed Hurewicz cofibration]]}. \end{defn} \begin{example} \label{RelativeCellComplexInclusionsAreClosedCofibrations}\hypertarget{RelativeCellComplexInclusionsAreClosedCofibrations}{} \textbf{([[retracts]] of [[relative cell complex]] inclusions are [[closed Hurewicz cofibrations]])} If $A$ is a [[topological space]] and $i \colon A \hookrightarrow X$ is a [[relative cell complex]] inclusion, then $i$ is a [[closed Hurewicz cofibration]] (def. \ref{HurewiczCofibration}). Also every [[retract]] of such $i$ (\href{Introduction+to+Homotopy+Theory#RetractsOfMorphisms}{this sense}) is a closed Hurewicz cofibration. \end{example} \hypertarget{pushouts__space_attachments}{}\subsubsection*{{Pushouts / space attachments}}\label{pushouts__space_attachments} Cofiber sequences (\hyperlink{CofiberSequences}{below}) are constructed by iterated \emph{[[pushouts]]} in the [[category]] [[Top]] of [[topological spaces]] with [[continuous functions]] between them ([[space attachments]]), see at \emph{\href{Top#UniversalConstructions}{Top -- Universal constructions}}. \begin{example} \label{QuotientBySubspace}\hypertarget{QuotientBySubspace}{} \textbf{([[quotient space]] by a [[subspace]])} Let $X$ be a [[topological space]] and $A \subset X$ a [[inhabited set|non-empty]] [[subset]]. Consider the [[equivalence relation]] on $X$ which identifies all points in $A$ with each other. The resulting [[quotient space]] is denoted $X/A$. Notice that $X/A$ is canonically a [[pointed topological space]], with base point the [[equivalence class]] $A/A \subset X/A$ of $A$. If $A = \emptyset$ is the [[empty space]], then one defines \begin{displaymath} X/\emptyset \coloneqq X_+ \coloneqq X \sqcup \ast \end{displaymath} to be the [[disjoint union space]] of $X$ with the [[point space]]. This is no longer a quotient space, but both constructions are unified by the \emph{[[pushout]]} $i \colon A \to X$ along the map $A \to \ast$, equivalently the [[cokernel]] of the inclusion: \begin{displaymath} \itexarray{ A &\overset{i}{\hookrightarrow}& X \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& X/A } \,. \end{displaymath} \end{example} \begin{example} \label{ClosedSubspacesGluing}\hypertarget{ClosedSubspacesGluing}{} \textbf{([[union]] of two [[open subset|open]] or two [[closed subset|closed]] [[subspaces]] is [[pushout]])} Let $X$ be a [[topological space]] and let $A,B \subset X$ be [[subspaces]] such that \begin{enumerate}% \item $A,B \subset X$ are both [[open subsets]] or are both [[closed subsets]]; \item they constitute a [[cover]]: $X = A \cup B$ \end{enumerate} Write $i_A \colon A \to X$ and $i_B \colon B \to X$ for the corresponding inclusion [[continuous functions]]. Then the [[commuting square]] \begin{displaymath} \itexarray{ A \cap B &\longrightarrow& A \\ \downarrow &(po)& \downarrow^{\mathrlap{i_A}} \\ B &\underset{i_B}{\longrightarrow}& X } \end{displaymath} is a [[pushout]] square in [[Top]] (see \href{Top#UniversalConstructions}{there}). By the [[universal property]] of the [[pushout]] this means in particular that for $Y$ any [[topological space]] then a function of underlying sets \begin{displaymath} f \;\colon\; X \longrightarrow Y \end{displaymath} is a [[continuous function]] as soon as its two restrictions \begin{displaymath} f\vert_A \;\colon\; A \longrightarrow Y \phantom{AAAA} f\vert_A \;\colon\; B \longrightarrow Y \end{displaymath} are continuous. \end{example} \begin{proof} Clearly the underlying diagram of underlying [[sets]] is a pushout in [[Set]]. Therefore (by \href{Top#DescriptionOfLimitsAndColimitsInTop}{this prop.}) we need to show that the [[topological space|topology]] on $X$ is the [[final topology]] induced by the set of functions $\{i_A, i_B\}$, hence that a [[subset]] $S \subset X$ is an [[open subset]] precisely if the [[pre-images]] (restrictions) \begin{displaymath} i_A^{-1}(S) = S \cap A \phantom{AAA} \text{and} \phantom{AAA} i_B^{-1}(S) = S \cap B \end{displaymath} are open subsets of $A$ and $B$, respectively. Now by definition of the [[subspace topology]], if $S \subset X$ is open, then the intersections $A \cap S \subset A$ and $B \cap S \subset B$ are open in these subspaces. Conversely, assume that $A \cap S \subset A$ and $B \cap S \subset B$ are open. We need to show that then $S \subset X$ is open. Consider now first the case that $A;B \subset X$ are both open open. Then by the nature of the [[subspace topology]], that $A \cap S$ is open in $A$ means that there is an open subset $S_A \subset X$ such that $A \cap S = A \cap S_A$. Since the intersection of two open subsets is open, this implies that $A \cap S_A$ and hence $A \cap S$ is open. Similarly $B \cap S$. Therefore \begin{displaymath} \begin{aligned} S & = S \cap X \\ & = S \cap (A \cup B) \\ & = (S \cap A) \cup (S \cap B) \end{aligned} \end{displaymath} is the union of two open subsets and therefore open. Now consider the case that $A,B \subset X$ are both closed subsets. Again by the nature of the subspace topology, that $A \cap S \subset A$ and $B \cap S \subset B$ are open means that there exist open subsets $S_A, S_B \subset X$ such that $A \cap S = A \cap S_A$ and $B \cap S = B \cap S_B$. Since $A,B \subset X$ are closed by assumption, this means that $A \setminus S, B \setminus S \subset X$ are still closed, hence that $X \setminus (A \setminus S), X \setminus (B \setminus S) \subset X$ are open. Now observe that (by [[de Morgan duality]]) \begin{displaymath} \begin{aligned} S & = X \setminus (X \setminus S) \\ & = X \setminus ( (A \cup B) \setminus S ) \\ & = X \setminus ( (A \setminus S) \cup (B \setminus S) ) \\ & = (X \setminus (A \setminus S)) \cap (X \setminus (B \setminus S)) \,. \end{aligned} \end{displaymath} This exhibits $S$ as the intersection of two open subsets, hence as open. \end{proof} A general abstract fact about pushouts which we will use repeatedly in the proofs below is the following: \begin{prop} \label{PastingLaw}\hypertarget{PastingLaw}{} \textbf{([[pasting law]])} Consider a [[diagram]] in [[Top]] (or in any other [[category]]) of the following form: \begin{displaymath} \itexarray{ &\longrightarrow& &\longrightarrow& \\ \downarrow &(po)& \downarrow && \downarrow \\ &\longrightarrow& &\longrightarrow& } \,, \end{displaymath} where the left square is a [[pushout]]. Then: The total rectangle is a [[pushout]] precisely if the right square is. \end{prop} We need the following two facts (prop. \ref{CofibrantHomotopyEquivalencePushout} prop. \ref{ContractibleSubcomplexQuotient}) regarding the stability of cofibrations under pushout. \begin{prop} \label{CofibrantHomotopyEquivalencePushout}\hypertarget{CofibrantHomotopyEquivalencePushout}{} \textbf{([[pushout]] of cofibrations)} Let $A$ be a [[topological space]] and let $A \hookrightarrow X$ be a [[closed Hurewicz cofibration]]. Then for every [[continuous function]] $f \colon A \to Y$, the [[pushout]] $f_\ast i$ in \begin{displaymath} \itexarray{ A &\overset{f}{\longrightarrow}& Y \\ {}^{\mathllap{i}}\downarrow &(po)& \downarrow^{\mathrlap{f_\ast i}} \\ X &\longrightarrow& X \underset{A}{\sqcup} Y } \end{displaymath} is also a [[closed Hurewicz cofibration]]. Moreover, if in addition \begin{enumerate}% \item $i$ is a [[retract]] of a [[relative cell complex]] inclusion, then so is $f_\ast i$, \item $i$ is a [[homotopy equivalence]], then so is $f_\ast i$. \end{enumerate} \end{prop} Prop. \ref{CofibrantHomotopyEquivalencePushout} is a consequence of the existence of the [[Strøm model structure]] $Top_{Strom}$ and the [[classical model structure on topological spaces]] $Top_{Quillen}$ and of the fact that the identity [[functors]] $Top_{Strom} \underoverset{\underset{id}{\longrightarrow}}{\overset{id}{\longleftarrow}}{\bot} Top_{Quillen}$ constitute a [[Quillen adjunction]]. \begin{prop} \label{ContractibleSubcomplexQuotient}\hypertarget{ContractibleSubcomplexQuotient}{} \textbf{([[quotient space|quotient]] by [[contractible topological space|contractible]] closed subspace)} Let $i \colon A \longrightarrow X$ be a [[closed Hurewicz cofibration]]. If $f \colon A \to Y$ is a [[homotopy equivalence]] (def. \ref{HomotopyEquivalence}) then its [[pushout]] $i_\ast f$ in \begin{displaymath} \itexarray{ A &\overset{i}{\longrightarrow}& X \\ {}^{\mathllap{f}}\downarrow &(po)& \downarrow^{\mathrlap{i_\ast(f)}} \\ Y &\longrightarrow& Y \underset{A}{\sqcup} X } \end{displaymath} is also a homotopy equivalence. In particular if $A$ is a [[contractible topological space]] (example \ref{ContractibleTopologicalSpace}), then the coprojection \begin{displaymath} X \longrightarrow X/A \end{displaymath} to the [[quotient space]] (example \ref{QuotientBySubspace}) is a [[homotopy equivalence]]. \end{prop} Prop. \ref{ContractibleSubcomplexQuotient} is again a consequence of the existence of the [[Strøm model structure]] $Top_{Strom}$: It is the statement that $Top_{Strom}$ is a [[left proper model category]] which follows (\href{proper%20model%20category#AllObjectsFibrantImpliesRightProper}{this cor.}) since all its objects are evidently cofibrant. An elementary proof in [[point-set topology]] is offered in (\href{algebraic+topology#Hatcher}{Hatcher, prop. 0.17}) \hypertarget{mapping_cones}{}\subsection*{{Mapping cones}}\label{mapping_cones} \begin{defn} \label{ConeCyclinder}\hypertarget{ConeCyclinder}{} \textbf{(topological [[cylinder]] and cone)} Let $X$ be a [[topological space]]. Then \begin{enumerate}% \item the \emph{standard [[cylinder]]} on $X$ is the [[product topological space]] \begin{displaymath} Cyl(X) \coloneqq X \times [0,1] \end{displaymath} \item the \emph{standard [[cone]]} on $X$ is the [[quotient space]] (example \ref{QuotientBySubspace}) \begin{displaymath} Cone(X) \coloneqq Cyl(X) / (X \times \{0\}) \end{displaymath} of the standard cylinder by the [[subspace]] $X \times \{0\} \subset X \times [0,1]$. Equivalently this is the following [[pushout]] in [[Top]] \begin{displaymath} \itexarray{ X \times \{0\} &\hookrightarrow& Cyl(X) \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& Cone(X) } \end{displaymath} \end{enumerate} \end{defn} \begin{lemma} \label{InclusionIntoCylinderIsHomotopyEquivalence}\hypertarget{InclusionIntoCylinderIsHomotopyEquivalence}{} Let $X$ be a topological space. Then the canonical inclusions \begin{displaymath} X \longrightarrow Cyl(X) \phantom{AAAA} \ast \longrightarrow Cone(X) \end{displaymath} are [[homotopy equivalences]]. Hence every [[cone]] is a contractible topological space] (example \ref{ContractibleTopologicalSpace}). \end{lemma} \begin{defn} \label{MappingConeCylinder}\hypertarget{MappingConeCylinder}{} \textbf{([[mapping cylinder]] and [[mapping cone]])} Let $f \colon X \to Y$ be a [[continuous function]] between [[topological spaces]]. Then \begin{enumerate}% \item the \emph{[[mapping cylinder]]} of $f$ is the [[space attachment]] \begin{displaymath} Cyl(f) \coloneqq Y \cup_f Cyl(X) \end{displaymath} of $Y$ with the [[cylinder]] on $X$, according to def. \ref{ConeCyclinder}, hence the following [[pushout]] in [[Top]] \begin{displaymath} \itexarray{ X &\overset{f}{\longrightarrow}& Y \\ \downarrow &(po)& \downarrow \\ Cyl(X) &\longrightarrow& Cyl(f) } \end{displaymath} \item the \emph{[[mapping cone]]} of $f$ is the [[space attachment]] \begin{displaymath} Cone(f) \coloneqq Y \cup_f Cone(X) \end{displaymath} hence the following [[pushout]] in [[Top]]: \begin{displaymath} \itexarray{ X &\overset{f}{\longrightarrow}& Y \\ \downarrow &(po)& \downarrow \\ Cone(X) &\longrightarrow& Cone(f) } \end{displaymath} \end{enumerate} \end{defn} \begin{remark} \label{MappingConePasting}\hypertarget{MappingConePasting}{} In summary, def. \ref{ConeCyclinder} and def. \ref{MappingConeCylinder} say that for $f \colon X \to Y$ a [[continuous function]] then we have a [[pasting]] of [[pushout]] diagrams in [[Top]] of the following form: \begin{displaymath} \itexarray{ && X &\stackrel{f}{\to}& Y \\ && \downarrow^{\mathrlap{i_1}} &(po)& \downarrow \\ X &\stackrel{i_0}{\to}& Cyl(X) &\to & Cyl(f) \\ \downarrow &(po)& \downarrow &(po)& \downarrow \\ {*} &\to& Cone(X) &\to& Cone(f) } \,. \end{displaymath} Since $X \to Cone(X)$ is a [[closed Hurewicz cofibration]] , the [[pasting law]] together with prop. \ref{CofibrantHomotopyEquivalencePushout} therefore implies that also $Y \to Cone(f)$ is a closed Hurwicz cofibration. \end{remark} \begin{example} \label{Suspension}\hypertarget{Suspension}{} \textbf{([[suspension]])} For $X$ a [[topological space]], then the [[mapping cone]] (def. \ref{MappingConeCylinder}) of the unique function $X \to \ast$ to the [[point space]] is \begin{displaymath} S X \coloneqq Cone(X \to \ast) \simeq Cone(X) \underset{X}{\sqcup} Cone(X) \,. \end{displaymath} This is called the \emph{[[suspension]]} of $X$. \end{example} The mapping cone of a map $X \to Y$ is to be thought of as the homotopy-quotient of the $Y$ by $X$, as opposed to be the naive quotient. This is made precise by the following two statements, lemma \ref{RelativeCellComplexInclusionMappingCone} and lemma \ref{ForClosedImageQuotientOfMappingConeByCone}: \begin{lemma} \label{RelativeCellComplexInclusionMappingCone}\hypertarget{RelativeCellComplexInclusionMappingCone}{} If $f \colon X \to Y$ is a [[closed Hurewicz cofibration]] (def. \ref{HurewiczCofibration}), then the coprojection \begin{displaymath} Cone(f) \longrightarrow Y/f(X) \end{displaymath} from its [[mapping cone]] (def. \ref{MappingConeCylinder}) to the naive [[quotient space]] (example \ref{QuotientBySubspace}) is a [[homotopy equivalence]]. \end{lemma} \begin{proof} Consider the diagram \begin{displaymath} \itexarray{ X &\overset{f}{\longrightarrow}& Y \\ \downarrow &(po)& \downarrow \\ Cone(X) &\longrightarrow& Cone(f) \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& Cone(f)/Cone(X) } \end{displaymath} Since $f$ is a [[closed Hurewicz cofibration]], so is $Cone(X) \to Cone(f)$, by prop. \ref{CofibrantHomotopyEquivalencePushout}. Since $Cone(X) \to \ast$ is a [[homotopy equivalence]] (lemma \ref{InclusionIntoCylinderIsHomotopyEquivalence}), so is $Cone(f) \to Cone(f)/Cone(X)$, by prop. \ref{ContractibleSubcomplexQuotient}. But by lemma \ref{ForClosedImageQuotientOfMappingConeByCone} there is also a homeomorphism $Cone(f)/Cone(X) \simeq Y/f(X)$. \end{proof} \begin{lemma} \label{ForClosedImageQuotientOfMappingConeByCone}\hypertarget{ForClosedImageQuotientOfMappingConeByCone}{} Let $f \colon X \to Y$ be a [[continuous function]] such that the [[image]] $f(X) \subset Y$ is a [[closed subset]]. Then there is a [[homeomorphism]] \begin{displaymath} Cone(f)/Cone(X) \simeq Y / f(X) \end{displaymath} between the [[quotient space]] (example \ref{QuotientBySubspace}) of the [[mapping cone]] of $f$ (def. \ref{MappingConeCylinder}) by the [[cone]] of $X$ (def. \ref{ConeCyclinder}) and the [[quotient space]] of $Y$ be the [[image]] of $X$. \end{lemma} \begin{proof} Consider the following [[diagram]] in [[Top]]: \begin{displaymath} \itexarray{ f(X) &\longrightarrow& Y \\ \downarrow &(po)& \downarrow \\ f(Cone(X)) &\longrightarrow& Cone(f) \\ \downarrow &(po)& \downarrow \\ \ast &\longrightarrow& Cone(f)/Cone(X) } \end{displaymath} Here the top square is a [[pushout]] by example \ref{ClosedSubspacesGluing}, while the bottom square is a pushout by def. \ref{MappingConeCylinder}. Hence the total rectangle is also a pushout, by the [[pasting law]] (prop. \ref{PastingLaw}). But that total rectangle is the defining pushout for $Y/f(X)$ (by example \ref{QuotientBySubspace}). Hence the statement follows by the [[universal property]] of the pushout. \end{proof} \hypertarget{CofiberSequences}{}\subsection*{{Cofiber sequences}}\label{CofiberSequences} \begin{prop} \label{HomotopyEquivalenceSuspensionWithMappingConeOfMappingCone}\hypertarget{HomotopyEquivalenceSuspensionWithMappingConeOfMappingCone}{} Let $f \colon X \to Y$ be a [[continuous function]] with [[closed subset|closed]] [[image]] $f(X) \subset Y$. Write $Cone(g)$ in \begin{displaymath} \itexarray{ X &\overset{f}{\longrightarrow}& Y &\overset{g}{\longrightarrow}& Cone(f) &\overset{}{\longrightarrow}& Cone(g) } \end{displaymath} for the [[mapping cone]] (spring) of the inclusion $g$ of $Y$ into the mapping cone of $f$. Then the canonical quotient coprojection \begin{displaymath} Cone(g) \to \Sigma X \end{displaymath} to the [[suspension]] of $X$ (example \ref{Suspension}) is a [[homotopy equivalence]] (def. \ref{HomotopyEquivalence}). \end{prop} \begin{proof} Since $g \colon Y \to Cone(f)$ is a [[closed Hurewicz cofibration]] (by remark \ref{MappingConePasting}), lemma \ref{RelativeCellComplexInclusionMappingCone} gives that \begin{displaymath} Cone(g) \to Cone(f)/g(Y) \end{displaymath} is a [[homotopy equivalence]]. But then there is the following evident [[homeomorphism]] \begin{displaymath} Cone(f)/g(Y) = (Y \cup_f Cone(X))/Y \simeq Cone(X)/X \simeq S X \,. \end{displaymath} \end{proof} (graphics taken from \href{http://personal.us.es/fmuro/praha.pdf}{Muro 10}) Hence from every $f \colon X \to Y$ with closed image, we get long sequences \begin{displaymath} \itexarray{ X &\overset{f}{\longrightarrow}& Y &\overset{g}{\longrightarrow}& Cone(f) &\longrightarrow& Cone(g) \\ && && && \downarrow^{\mathrlap{\text{homotopy} \atop \text{equivalence}}} \\ && && && S X &\overset{S f}{\longrightarrow}& S Y &\longrightarrow& \cdots } \end{displaymath} \hypertarget{pointed_cofiber_sequence}{}\subsection*{{Pointed cofiber sequence}}\label{pointed_cofiber_sequence} (\ldots{}) \end{document}