\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological cyclic homology} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{higher_algebra}{}\paragraph*{{Higher algebra}}\label{higher_algebra} [[!include higher algebra - contents]] \hypertarget{cohomology}{}\paragraph*{{Cohomology}}\label{cohomology} [[!include cohomology - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{ReferencesExamples}{Examples}\dotfill \pageref*{ReferencesExamples} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} \textbf{Topological Hochschild homology} (resp. \textbf{topological cyclic homology}) (see the survey in (\hyperlink{May}{May})) is a refinement of [[Hochschild homology]]/[[cyclic homology]] from [[commutative rings]]/algebras to the [[higher algebra]] of [[ring spectra]]/[[E-∞ rings]]/[[E-∞ algebras]]. One motivation for their study comes from computational considerations, as in certain cases, these invariants are easier to compute than [[algebraic K-theory]], while there is a natural morphism of [[spectra]] \begin{displaymath} \itexarray{ && \mathbf{TC}(R) \\ & {}^{\mathllap{cyclotomic \atop trace}}\nearrow & \downarrow \\ \mathbf{K}(R) &\underset{}{\longrightarrow}& \mathbf{THH}(R) } \end{displaymath} from the [[algebraic K-theory]] spectrum to the [[topological Hochschild homology]] spectrum, called the [[Dennis trace]] map, whose [[homotopy fiber|fiber]] is relatively well-understood. Since Hochschild homology spectra are naturally [[cyclotomic spectra]], this map factors through the topological cyclic homology spectrum via a map called the \emph{[[cyclotomic trace]]}, which acts much like a [[Chern character]] map for [[algebraic K-theory]]. The spectra $THH(R)$ and $TC(R)$ are typically easier to analyze than $K(R)$. Moreover, the difference between them and $K(R)$ is ``locally constant'' (\hyperlink{DundasGoodwillieMcCarthy13}{Dundas-Goodwillie-McCarthy13}) and often otherwise bounded in complexity. Accordingly, $THH$ and $TC$ are in practice computationally useful approximations to $K$. There are various generalizations: \begin{enumerate}% \item Just as for basic Hochschild homology, there is \emph{higher topological Hochschild homology} (\hyperlink{CarlssonDouglasDundas08}{Carlsson-Douglas-Dundas 08}) given not just by [[derived loop spaces]] but by derived mapping spaces out of higher dimensional [[tori]]. \item Just as algebraic K-theory generalizes from [[E-∞ rings]] to [[stable ∞-categories]], so do $TC$ and the cyclotomic trace map (\hyperlink{BlumbergGepnerTabuada11}{Blumberg-Gepner-Tabuada 11}) \end{enumerate} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[cyclic homology]], [[dihedral homology]] \item [[Chern character]] \item [[norm cofibration]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \hypertarget{general}{}\subsubsection*{{General}}\label{general} The original references are \begin{itemize}% \item [[Marcel Bökstedt]], \emph{Topological Hochschild homology}, Bielefeld, 1985, 1988 \item [[Marcel Bökstedt]], W.C. Hsiang, [[Ib Madsen]], \emph{The cyclotomic trace and algebraic K-theory of spaces}, Invent. Math. \textbf{111} (1993), 463-539, \href{http://www.ams.org/mathscinet-getitem?mr=1202133}{MR94g:55011}, \href{http://dx.doi.org/10.1007/BF01231296}{doi} \item [[Marcel Bökstedt]], [[Ib Madsen]], \emph{Topological cyclic homology of the integers}, $K$-theory (Strasbourg, 1992). Ast\'e{}risque \textbf{226} (1994), 7--8, 57--143. \end{itemize} and a further generalization is defined in \begin{itemize}% \item [[Bjørn Ian Dundas]], Randy McCarthy, \emph{Topological Hochschild homology of ring functors and exact categories}, J. Pure Appl. Algebra \textbf{109} (1996), no. 3, 231--294, \href{http://www.ams.org/mathscinet-getitem?mr=1388700}{MR97i:19001}, \end{itemize} Higher topological Hochschild Homology is discussed in \begin{itemize}% \item [[Gunnar Carlsson]], [[Christopher Douglas]], [[Bjørn Ian Dundas]], \emph{Higher topological cyclic homology and the Segal conjecture for tori}, Adv. Math. \textbf{226} (2011), no. 2, 1823--1874, (\href{http://arxiv.org/abs/0803.2745}{arXiv:0803.2745}, \href{http://www.ams.org/mathscinet-getitem?mr=2737802}{MR2737802}, \href{http://dx.doi.org/10.1016/j.aim.2010.08.016}{doi}) \end{itemize} A general abstract construction is in \begin{itemize}% \item [[Thomas Nikolaus]], [[Peter Scholze]], chapter 3 of \emph{On topological cyclic homology} (\href{https://arxiv.org/abs/1707.01799}{arXiv:1707.01799}) \end{itemize} Review and exposition includes \begin{itemize}% \item [[Peter May]], \emph{Topological Hochschild and Cyclic Homology and Algebraic K-theory} (\href{http://www.math.uchicago.edu/~may/TALKS/THHTC.pdf}{pdf}) \item [[Anthony Elmendorf]], [[Igor Kriz]], [[Michael Mandell]], [[Peter May]], chapter IX of \emph{[[Rings, modules and algebras in stable homotopy theory]]}, AMS Mathematical Surveys and Monographs Volume 47 (1997) (\href{http://www.math.uchicago.edu/~may/BOOKS/EKMM.pdf}{pdf}) \item [[Bjørn Dundas]], [[Thomas Goodwillie]], [[Randy McCarthy]], \emph{The local structure of algebraic K-theory}, Springer 2013 (\href{http://math.mit.edu/~nrozen/juvitop/dundas.pdf}{pdf}) \item [[Teena Gerhardt]], \emph{Computations in algebraic K-theory}, talk at \href{http://qcpages.qc.cuny.edu/~swilson/cunyworkshop14.html}{CUNY Workshop on differential cohomologies 2014} (\href{http://videostreaming.gc.cuny.edu/videos/video/1800/in/channel/55/}{video recording}) \item Ricardo Andrade, \emph{THH notes}, MIT juvitop seminar \href{http://math.mit.edu/~nrozen/juvitop/ra%20-%20juvitop.pdf}{pdf}, babytop seminar \href{http://math.mit.edu/~nrozen/juvitop/ra%20-%20babytop.pdf}{pdf} \item Anatoly Preygel, \emph{Hochschild homology notes}, juvitop seminar, \href{http://math.mit.edu/~nrozen/juvitop/note_hh_talk.pdf}{pdf} \item Thomas Geisser, \emph{Motivic Cohomology, K-Theory and Topological Cyclic Homology}, Handbook of K-theory II.1, \href{http://www.math.uiuc.edu/K-theory/handbook/1-193-234.pdf}{pdf} \item Ib Madsen, \emph{Algebraic K-theory and traces}, \href{http://math.mit.edu/~nrozen/juvitop/madsen.pdf}{pdf} \end{itemize} Abstract characterization of the [[Dennis trace]] and cyclotomic trace is discussed in \begin{itemize}% \item [[Andrew Blumberg]], [[David Gepner]], [[Goncalo Tabuada]], \emph{Uniqueness of the multiplicative cyclotomic trace}, Advances in Mathematics 260 (2014) 191-232 (\href{http://arxiv.org/abs/1103.3923}{arXiv:1103.3923}) \end{itemize} An approach using only homotopy-invariant notions, which gives a construction of topological cyclic homology based on a new definition of the ∞-category of [[cyclotomic spectra]] is in \begin{itemize}% \item [[Thomas Nikolaus]], [[Peter Scholze]], \emph{On topological cyclic homology}, \href{https://arxiv.org/abs/1707.01799}{arXiv:1707.01799} \end{itemize} See also \begin{itemize}% \item T. Pirashvili, F. Waldhausen, \emph{Mac Lane homology and topological Hochschild homology}, J. Pure Appl. Algebra \textbf{82} (1992), 81-98, \href{http://www.ams.org/mathscinet/search/mathscinet-getitem?mr=520492}{MR96d:19005}, \item [[T. Pirashvili]], \emph{On the topological Hochschild homology of $\mathbf{Z}/p^k\mathbf{Z}$}, Comm. Algebra \textbf{23} (1995), no. 4, 1545--1549, \href{http://www.ams.org/mathscinet-getitem?mr=1317414}{MR97h:19007}, \href{http://dx.doi.org/10.1080/00927879508825293}{doi} \item Z. Fiedorowicz, T. Pirashvili, R. Schw\"a{}nzl, R. Vogt, F. Waldhausen, \emph{Mac Lane homology and topological Hochschild homology}, Math. Ann. \textbf{303} (1995), no. 1, 149--164, \href{http://www.ams.org/mathscinet-getitem?mr=1348360}{MR97h:19007}, \href{http://dx.doi.org/10.1007/BF01460984}{doi} \item [[Bjørn Ian Dundas]], \emph{Relative K-theory and topological cyclic homology}, Acta Math. \textbf{179} (1997), 223-242, (\href{http://link.springer.com/article/10.1007%2FBF02392744}{publisher}) \item Thomas Geisser, Lars Hesselhoft, \emph{Topological cyclic homology of schemes}, in: Algebraic $K$-theory (Seattle, WA, 1997), 41--87, Proc. Sympos. Pure Math. \textbf{67}, Amer. Math. Soc. 1999, \href{http://www.ams.org/mathscinet-getitem?mr=1743237}{MR2001g:19003}; \href{http://www.math.uiuc.edu/K-theory/0231/}{K-theory archive} \item R. McCarthy, \emph{Relative algebraic K-theory and topological cyclic homology}, Acta Math. \textbf{179} (1997), 197-222. \item J. McClure, R. Staffeldt, \emph{On the topological Hochschild homology of $b u$, I}, \href{http://math.mit.edu/~nrozen/juvitop/mcclure.pdf}{pdf} \item Daniel Joseph Vera, \emph{Topological Hochschild homology of twisted group algebra}, MIT Ph. D. thesis 2006, \href{http://dspace.mit.edu/bitstream/handle/1721.1/34615/71329129.pdf?sequence=1}{pdf} \item V. Angeltveit, A. Blumberg, T. Gerhardt, M. Hill, T. Lawson, M. Mandell, \emph{Topological cyclic homology via the norm} (\href{http://arxiv.org/abs/1401.5001}{arXiv:1401.5001}) \end{itemize} \hypertarget{ReferencesExamples}{}\subsubsection*{{Examples}}\label{ReferencesExamples} THH and TC specifically of [[KU|ku]] and [[KO|ko]] is discussed in \begin{itemize}% \item [[Christian Ausoni]], [[John Rognes]], \emph{Algebraic K-theory of topological K-theory}, Acta Mathematica March 2002, Volume 188, Issue 1, pp 1-39 (\href{http://www.math.uiuc.edu/K-theory/0405/}{KTheory 0405}) \item [[Vigleik Angeltveit]], [[Michael Hill]], [[Tyler Lawson]], \emph{Topological Hochschild homology of $\ell$ and $ko$} (\href{http://arxiv.org/abs/0710.4368}{arXiv:0710.4368}) \item [[Andrew Blumberg]], [[Michael Mandell]], \emph{Localization for $THH(ku)$ and the topological Hochschild and cyclic homology of Waldhausen categories} (\href{http://arxiv.org/abs/1111.4003}{arXiv:1111.4003}) \end{itemize} and of [[tmf]] in \begin{itemize}% \item [[Bob Bruner]], [[John Rognes]], \emph{Topological Hochschild homology of topological modular forms} 2008 (\href{http://folk.uio.no/rognes/papers/ntnu08.pdf}{pdf}) \end{itemize} [[!redirects topological Hochschild homology]] [[!redirects THH]] [[!redirects TC]] \end{document}