\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological group} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topology}{}\paragraph*{{Topology}}\label{topology} [[!include topology - contents]] \hypertarget{group_theoryc}{}\paragraph*{{Group Theoryc}}\label{group_theoryc} [[!include group theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{uniform_structure}{Uniform structure}\dotfill \pageref*{uniform_structure} \linebreak \noindent\hyperlink{unitary_representation_on_hilbert_spaces}{Unitary representation on Hilbert spaces}\dotfill \pageref*{unitary_representation_on_hilbert_spaces} \linebreak \noindent\hyperlink{why_the_strong_topology_is_used}{Why the strong topology is used}\dotfill \pageref*{why_the_strong_topology_is_used} \linebreak \noindent\hyperlink{which_topological_groups_admit_lie_group_structure}{Which topological groups admit Lie group structure?}\dotfill \pageref*{which_topological_groups_admit_lie_group_structure} \linebreak \noindent\hyperlink{Protomodularity}{Protomodularity}\dotfill \pageref*{Protomodularity} \linebreak \noindent\hyperlink{examples}{Examples}\dotfill \pageref*{examples} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \emph{topological group} is a [[topological space]] with a continuous [[group]] structure: a [[group object]] in the [[category]] [[Top]]. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} \begin{defn} \label{}\hypertarget{}{} A \emph{topological group} is \begin{enumerate}% \item a [[group]], hence \begin{enumerate}% \item a [[set]] $G$, \item a [[neutral element]] $e \in G$, \item a [[associativity|associative]] [[unitality|unitality]] [[function]] \item $(-)\cdot (-) \;\colon\; G \times G \to G$, \item a function $(-)^{-1} \;\colon\; G \to G$ such that $g \cdot g^{-1} = e = g^{-1} \cdot g$ for all $g \in G$; \end{enumerate} \item a topology $\tau_G \subset P(G)$ giving $G$ the structure of a [[topological space]] \end{enumerate} such that the operations $(-)^{-1}$ and $(-)\cdot (-)$ are [[continuous functions]] (the latter with respect to the [[product topology]]). \end{defn} \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{lemma} \label{OpenSubgroupOfTopologicalGroupIsClosed}\hypertarget{OpenSubgroupOfTopologicalGroupIsClosed}{} \textbf{(open subgroups of topological groups are closed)} Every [[open subset|open]] [[subgroup]] $H \subset G$ of a topological group is [[closed subset|closed]]. \end{lemma} (e.g \hyperlink{ArhangelskiiTkachenko08}{Arhangel'skii-Tkachenko 08, theorem 1.3.5}) \begin{proof} The set of $H$-[[cosets]] is a [[cover]] of $G$ by [[disjoint subsets|disjoint]] [[open subsets]]. One of these cosets is $H$ itself and hence it is the complement of the union of the other cosets, hence the complement of an open subspace, hence closed. \end{proof} \begin{prop} \label{ConnectedLocallyCompactTopologicalGroupsAreSigmaCompact}\hypertarget{ConnectedLocallyCompactTopologicalGroupsAreSigmaCompact}{} \textbf{([[connected space|connected]] [[locally compact topological space|locally compact]] [[topological groups]] are [[sigma-compact topological space|sigma-compact]])} Every [[connected topological space|connected]] [[locally compact topological space|locally compact]] topological group is [[sigma-compact topological space|sigma-compact]]. Every [[locally compact topological space|locally compact]] topological group is [[paracompact topological space|paracompact]]. \end{prop} (e.g. \hyperlink{ArhangelskiiTkachenko08}{Arhangel'skii-Tkachenko 08, cor. 3.1.4, cor. 3.1.5}) \begin{proof} By assumption of local compactness, there exists a [[compact topological space|compact]] [[neighbourhood]] $C_e \subset G$ of the [[neutral element]]. We may assume without restriction of generality that with $g \in C_e$ any element, then also the [[inverse element]] $g^{-1} \in C_e$. For if this is not the case, then we may enlarge $C_e$ by including its inverse elements, and the result is still a compact neighbourhood of the neutral element: Since taking [[inverse elements]] $(-)^{-1} \colon G \to G$ is a [[continuous function]], and since [[continuous images of compact spaces are compact]], it follows that also the set of inverse elements to elements in $C_e$ is compact, and the union of two compact subspaces is still compact (obviously, otherwise see \href{compact+space#UnionsAndIntersectionOfCompactSubspaces}{this prop}). Now for $n \in \mathbb{N}$, write $C_e^n \subset G$ for the [[image]] of $\underset{k \in \{1, \cdots n\}}{\prod} C_e \subset \underset{k \in \{1, \cdots, n\}}{\prod} G$ under the iterated group product operation $\underset{k \in \{1, \cdots, n\}}{\prod} G \longrightarrow G$. Then \begin{displaymath} H \coloneqq \underset{n \in \mathbb{N}}{\cup} C_e^n \;\subset\; G \end{displaymath} is clearly a topological subgroup of $G$. Observe that each $C_e^n$ is compact. This is because $\underset{k \in \{1, \cdots, n\}}{\prod}C_e$ is compact by the [[Tychonoff theorem]], and since [[continuous images of compact spaces are compact]]. Thus \begin{displaymath} H = \underset{n \in \mathbb{N}}{\cup} C_e^n \end{displaymath} is a countable union of compact subspaces, making it [[sigma-compact]]. Since [[locally compact and sigma-compact spaces are paracompact]], this implies that $H$ is paracompact. Observe also that the subgroup $H$ is open, because it contains with the [[interior]] of $C_e$ a non-empty open subset $Int(C_e) \subset H$ and we may hence write $H$ as a union of open subsets \begin{displaymath} H = \underset{h \in H}{\cup} Int(C_e) \cdot h \,. \end{displaymath} Finally, as indicated in the proof of Lemma \ref{OpenSubgroupOfTopologicalGroupIsClosed}, the cosets of the open subgroup $H$ are all open and partition $G$ as a [[disjoint union space]] ([[coproduct]] in [[Top]]) of these open cosets. From this we may draw the following conclusions. \begin{itemize}% \item In the particular case where $G$ is connected, then there is just one such coset, namely $H$ itself. The argument above thus shows that a connected locally compact topological group is $\sigma$-compact and (by local compactness) also paracompact. \item In the general case, all the cosets are homeomorphic to $H$ which we have just shown to be a paracompact group. Thus $G$ is a [[disjoint union space]] of paracompact spaces. This is again paracompact (by \href{paracompact+topological+space#ParacompactnessPreservedByDisjointUnion}{this prop.}). \end{itemize} \end{proof} \hypertarget{uniform_structure}{}\subsubsection*{{Uniform structure}}\label{uniform_structure} A topological group $G$ carries two canonical [[uniform space|uniformities]]: a right and left uniformity. The \textbf{right uniformity} consists of entourages $\sim_{l, U}$ where $x \sim_{l, U} y$ if $x y^{-1} \in U$; here $U$ ranges over neighborhoods of the identity that are symmetric: $g \in U \Leftrightarrow g^{-1} \in U$. The \textbf{left uniformity} similarly consists of entourages $\sim_{r, U}$ where $x \sim_{r, U} y$ if $x^{-1} y \in U$. The uniform topology for either coincides with the topology of $G$. Obviously when $G$ is commutative, the left and right uniformities coincide. They also coincide if $G$ is compact Hausdorff, since in that case there is only one uniformity whose uniform topology reproduces the given topology. Let $G$, $H$ be topological groups, and equip each with their left uniformities. Let $f: G \to H$ be a group homomorphism. \begin{prop} \label{}\hypertarget{}{} The following are equivalent: \begin{itemize}% \item The map $f$ is continuous at a point of $G$; \item The map $f$ is continuous; \item The map $f$ is uniformly continuous. \end{itemize} \end{prop} \begin{proof} Suppose $f$ is continuous at $g \in G$. Since neighborhoods of a point $x$ are $x$-translates of neighborhoods of the identity $e$, continuity at $g$ means that for all neighborhoods $V$ of $e \in H$, there exists a neighborhood $U$ of $e \in G$ such that \begin{displaymath} f(g U) \subseteq f(g) V \end{displaymath} Since $f$ is a homomorphism, it follows immediately from cancellation that $f(U) \subseteq V$. Therefore, for every neighborhood $V$ of $e \in H$, there exists a neighborhood $U$ of $e \in G$ such that \begin{displaymath} x y^{-1} \in U \Rightarrow f(x) f(y)^{-1} = f(x y^{-1}) \in V \end{displaymath} in other words such that $x \sim_U y \Rightarrow f(x) \sim_V f(y)$. Hence $f$ is uniformly continuous with respect to the right uniformity. By similar reasoning, $f$ is uniformly continuous with respect to the right uniformity. \end{proof} \hypertarget{unitary_representation_on_hilbert_spaces}{}\subsubsection*{{Unitary representation on Hilbert spaces}}\label{unitary_representation_on_hilbert_spaces} \begin{defn} \label{}\hypertarget{}{} A unitary [[representation]] $R$ of a topological group $G$ in a [[Hilbert space]] $\mathcal{H}$ is a continuous [[group homomorphism]] \begin{displaymath} R \colon G \to \mathcal{U}(\mathcal{H}) \end{displaymath} where $\mathcal{U}(\mathcal{H})$ is the group of [[unitary operator]]s on $\mathcal{H}$ with respect to the [[strong topology]]. \end{defn} \begin{remark} \label{}\hypertarget{}{} Here $\mathcal{U}(\mathcal{H})$ is a complete, metrizable topological group in the [[strong topology]], see (\hyperlink{Schottenloher}{Schottenloher, prop. 3.11}). \end{remark} \begin{remark} \label{}\hypertarget{}{} In [[physics]], when a [[classical mechanical system]] is symmetric, i.e. invariant in a proper sense, with respect to the action of a topological group $G$, then an unitary representation of $G$ is sometimes called a \textbf{quantization} of $G$. See at \emph{[[geometric quantization]]} and \emph{[[orbit method]]} for more on this. \end{remark} \hypertarget{why_the_strong_topology_is_used}{}\paragraph*{{Why the strong topology is used}}\label{why_the_strong_topology_is_used} The reason that in the definition of a [[unitary representation]], the [[strong operator topology]] on $\mathcal{U}(\mathcal{H})$ is used and not the [[norm topology]], is that only few [[homomorphisms]] turn out to be [[continuous map|continuous]] in the norm topology. Example: let $G$ be a [[compact topological space|compact]] [[Lie group]] and $L^2(G)$ be the [[Hilbert space]] of square integrable [[measurable function]]s with respect to its [[Haar measure]]. The right [[regular representation]] of $G$ on $L^2(G)$ is defined as \begin{displaymath} R: G \to \mathcal{U}(L^2(G)) \end{displaymath} \begin{displaymath} g \mapsto (R_g: f(x) \mapsto f(x g)) \end{displaymath} and this will generally not be continuous in the norm topology, but is always continuous in the strong topology. \hypertarget{which_topological_groups_admit_lie_group_structure}{}\subsubsection*{{Which topological groups admit Lie group structure?}}\label{which_topological_groups_admit_lie_group_structure} \begin{itemize}% \item \emph{[[Hilbert's fifth problem]]} \end{itemize} \hypertarget{Protomodularity}{}\subsubsection*{{Protomodularity}}\label{Protomodularity} \begin{prop} \label{}\hypertarget{}{} The [[category]] [[TopGrp]] of topological groups and [[continuous function|continuous]] [[group homomorphisms]] between them is a [[protomodular category]]. \end{prop} A proof is spelled out by [[Todd Trimble]] \href{http://mathoverflow.net/questions/133110/why-is-topgrp-the-category-of-topological-groups-and-continous-homomorphisms-prot/133601#133601}{here on MO}. \hypertarget{examples}{}\subsection*{{Examples}}\label{examples} \begin{itemize}% \item The [[classical Lie groups]] are in particular topological groups, such as the [[general linear group]] and its subgroups. \item \ldots{} \end{itemize} \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[group]] \item [[discrete group]], [[finite group]] \item [[topological monoid]] \item \textbf{topological group}, \begin{itemize}% \item [[locally compact topological group]] \item [[compact topological group]] \item [[amenable topological group]] \item [[maximal compact subgroup]] \item [[loop group]] \end{itemize} \item [[Lie group]] \end{itemize} \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item Alexander Arhangel'skii, Mikhail Tkachenko, \emph{Topological Groups and Related Structures}, Atlantis Press 2008 \end{itemize} The following monograph is not particulary about group representations, but some content of this page is based on it: \begin{itemize}% \item [[Martin Schottenloher]], \emph{A mathematical introduction to conformal field theory.} Springer, 2nd edition 2008 (\href{http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1161.17014&format=complete}{ZMATH entry}) \end{itemize} [[!redirects topological groups]] \end{document}