\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topological localization} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{topos_theory}{}\paragraph*{{$(\infty,1)$-Topos Theory}}\label{topos_theory} [[!include (infinity,1)-topos - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{definition}{Definition}\dotfill \pageref*{definition} \linebreak \noindent\hyperlink{properties}{Properties}\dotfill \pageref*{properties} \linebreak \noindent\hyperlink{general}{General}\dotfill \pageref*{general} \linebreak \noindent\hyperlink{for_presheaf_categories}{For $(\infty,1)$-presheaf $(\infty,1)$-categories}\dotfill \pageref*{for_presheaf_categories} \linebreak \noindent\hyperlink{model_category_presentation}{Model category presentation}\dotfill \pageref*{model_category_presentation} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A \textbf{topological localization} is a left exact [[localization of an (∞,1)-category]] -- in the sense of passing to a [[reflective sub-(∞,1)-category]] -- at a collection of morphisms that are [[monomorphism in an (∞,1)-category|monomorphisms]]. A topological localization of an [[(∞,1)-category of (∞,1)-presheaves]] $PSh_{(\infty,1)}(C)$ is precisely a localization at [[Cech cover]]s for a given [[Grothendieck topology]] on $C$, yielding the corresponding [[(∞,1)-topos]] [[(∞,1)-category of (∞,1)-sheaves|of (∞,1)-sheaves]]. \begin{displaymath} Sh_{(\infty,1)}(C) \hookrightarrow PSh_{(\infty,1)}(C) \end{displaymath} and in fact equivalence classes of such topological localizations are in bijection with [[Grothendieck topology|Grothendieck topologies]] on $C$. Notice that in general a topological localization is not a [[hypercomplete (∞,1)-topos]]. That in general requires localization further at [[hypercover]]s. \hypertarget{definition}{}\subsection*{{Definition}}\label{definition} Recall that a [[reflective sub-(∞,1)-category]] $D \stackrel{\stackrel{L}{\leftarrow}}{\hookrightarrow} C$ is obtained by localizing at a collection $S$ of morphisms of $C$. The class $\bar S$ of all morphisms of $C$ that the left adjoint $L : C \to D$ sends to equivalences is the \emph{strongly saturated class} of morphisms generated by $S$. By the , the functor $L$ is exact if and only if $\bar S$ is stable under the formation of pullbacks. We now define such localizations where the collection $S$ consists of \emph{[[monomorphism in an (∞,1)-category|monomorphisms]]} . \begin{defn} \label{}\hypertarget{}{} Call a morphism $f : X \to Y$ in an [[(∞,1)-category]] $C$ a \textbf{[[monomorphism in an (∞,1)-category|monomorphism]]} if it is a [[n-truncated object of an (infinity,1)-category|(-1)-truncated object]] in the [[overcategory]] $X_{/Y}$. Equivalently: if for every object $A \in C$ the induced morphism in the [[homotopy category]] of [[∞-groupoid]]s \begin{displaymath} C(A,f) : C(A,X) \to C(A,Y) \end{displaymath} exhibits $C(A,X)$ as a [[direct sum|direct summand]] of $C(A,Y)$. Equivalence classes of monomorphisms into an object $X$ form a [[poset]] $Sub(X)$ of [[subobject]]s of $X$. \end{defn} This is [[Higher Topos Theory|HTT, p. 460]] \begin{example} \label{}\hypertarget{}{} The standard example to keep in mind is that of a [[Cech nerve]]. In fact, as the propositions below will imply, this is for the purposes of localizations of an [[(∞,1)-category of (∞,1)-presheaves]] the \emph{only} kind of example. Let [[Diff]] be the category of smooth manifolds and $PSh_{(\infty,1)}(Diff)$ the [[(∞,1)-category of (∞,1)-presheaves]] on $Diff$, which may be modeled by the global [[model structure on simplicial presheaves]] on $Diff$. For $X \in Diff$ a [[manifold]], let $\{U_i \hookrightarrow X\}$ be an [[open cover]]. Let $C(\{U_i\})$ be the [[Cech nerve]] of this cover, the [[simplicial object]] of presheaves \begin{displaymath} C(\{U_i\}) = \left( \cdots \coprod_{i j} U_i \cap U_j \stackrel{\to}{\to}\coprod_{i} U_i \right) \,. \end{displaymath} which we may regard as a [[simplicial presheaf]] and hence as an object of $PSh_{(\infty,1)}(Diff)$. Then for $V$ any other [[manifold]], we have that \begin{displaymath} PSh_{(\infty,1)}(V, C(\{U_i\})) \end{displaymath} is the [[∞-groupoid]] whose \begin{itemize}% \item [[object]]s are maps $V \to X$ that factor through one of the $U_i$; \item there is a unique [[morphism]] between two such maps precisely if they factor through a double intersection $U_{i} \cap U_j$; \item and so on. \end{itemize} In the [[homotopy category of an (∞,1)-category|homtopy category]] of [[∞-groupoid]]s, this is equivalent to the [[0-groupoid]]/[[set]] of those maps $V \to X$ that factor through one of the $U_i$. Notice that this constitutes the [[sieve]] generated by the [[covering]] family $\{U_i \to X\}$. This is a subset of the [[0-groupoid]]/[[set]] $PSh_{(\infty)}(V,X) = Hom_{Diff}(V,X)$, hence a [[direct sum]]mand. \end{example} \begin{defn} \label{}\hypertarget{}{} \textbf{topological localization} Let $C$ be a [[presentable (∞,1)-category]]. A strongly saturated class $\bar S \subset Mor(C)$ of morphisms is called \textbf{topological} if \begin{itemize}% \item there is a subclass $S \subset \bar S$ of \emph{[[monomorphism in an (infinity,1)-category|monomorphisms]]} that generates $\bar S$; \item under [[pullback]] in $C$ elements in $\bar S$ pull back to elements in $\bar S$. \end{itemize} A [[reflective sub-(∞,1)-category]] \begin{displaymath} D \stackrel{\overset{L}{\leftarrow}}{\hookrightarrow} C \end{displaymath} is called a \textbf{topological localization} if the class of morphisms $\bar S := L^{-1}(equiv)$ that $L$ sends to equivalences is topological. \end{defn} This is [[Higher Topos Theory|HTT, def. 6.2.1.4]] \begin{defn} \label{}\hypertarget{}{} \textbf{$(\infty,1)$-sheaves} Let $C$ be an [[(∞,1)-site]]. Let $S$ be the collection of all [[monomorphism in an (∞,1)-category|monomorphisms]] $U \to c$ to objects $c \in Y$ (under [[(infinity,1)-Yoneda lemma|Yoneda embedding]]) that correspond to [[covering]] [[sieve]]s in $C$. Say an object $c \in PSh_{(\infty,1)}(C)$ in the [[(∞,1)-category of (∞,1)-presheaves]] on $C$ is an \textbf{[[(∞,1)-sheaf]]} if it is an $S$-[[local object]] (i.e. if it satisfies [[descent]] along all morphisms $U \to c$ coming from covering sieves). Write \begin{displaymath} Sh_{(\infty,1)}(C) \hookrightarrow PSh_{(\infty,1)}(X) \end{displaymath} for the [[reflective sub-(∞,1)-category]] on these $(\infty,1)$-sheaves. \end{defn} This is [[Higher Topos Theory|HTT, def. 6.2.2.6]] \textbf{Warning:} A topological localization is, by definition, a \emph{left exact} localization at a set of monomorphisms; left exactness is part of the definition. A general localization at a set of monomorphisms need not be left exact. For instance, the localization at one of the inclusions $1\to 1+1$ is the $(-1)$-truncation, which is not left exact. \hypertarget{properties}{}\subsection*{{Properties}}\label{properties} Let throughout $C$ be a [[locally presentable (∞,1)-category]]. \hypertarget{general}{}\subsubsection*{{General}}\label{general} \begin{cor} \label{}\hypertarget{}{} \textbf{(topological localizations are exact)} Every topological localization is an \emph{exact localization} in that the reflector $L : C \to D$ preserves [[finite limit]]s. \end{cor} \begin{proof} At it is shown that a reflective localization is exact precisely if the class of morphisms that it inverts is stable under pullback. This is the case for topological localizations by definition. \end{proof} \begin{prop} \label{}\hypertarget{}{} \textbf{(generation from a small set of morphisms)} For every topological localization of $C$ at a strongly saturated class $\bar S$ there exists a [[small set]] of [[monomorphism in an (∞,1)-category|monomorphisms]] that generates $\bar S$. \end{prop} This is [[Higher Topos Theory|HTT, prop. 6.2.1.5]]. \begin{ucorollary} Every topological localization of $C$ is necessarily [[accessible (∞,1)-category|accessible]] and exact. \end{ucorollary} This is [[Higher Topos Theory|HTT, cor. 6.2.1.6]] The following proposition asserts that for the construction of [[(n,1)-topos]]es the notion of topological localization is empty: if colimits commute with products, then already every localization is topological. Accordingly, also the notion of [[hypercompletion]] is relevant only for [[(∞,1)-topos]]es. \begin{uprop} \textbf{(localizations of presentable $n$-categories are topological)} Let $C$ be a [[locally presentable (∞,1)-category|locall presentable]] [[(n,1)-category]] for $n \in \mathbb{N}$ finite with [[universal colimits]]. Then every left exact [[localization of an (∞,1)-category|localization of]] $C$ is a topological localization \end{uprop} This is [[Higher Topos Theory|HTT, prop. 6.4.3.9]]. \begin{proof} \ldots{} \end{proof} This means that every [[(n,1)-topos]] of $n$-sheaves is a localization at [[Cech nerve]]s of covers. \textbf{Remark} Notice in this context the statement found for instance in \begin{itemize}% \item [[Daniel Dugger]], [[Sharon Hollander]], [[Daniel Isaksen]], \emph{Hypercovers and simplicial presheaves} (\href{http://www.math.uiuc.edu/K-theory/0563/}{web}) \end{itemize} that a [[simplicial presheaf]] that satisfies [[descent]] on all [[Cech cover]]s already satisfies descent for all \emph{bounded} hypercovers. If the simplicial presheaf is $n$-truncated for some $n$, then it won't ``see'' $k$-bounded hypercovers for large enough $k$ anyway, and hence it follows that truncated simplicial presheaves that satisfy Cech descent already satisfy hyperdescent. This is in line with the above statement that for $n$-toposes with finite $n$ there is no distinction between Cech descent and hyperdescent. The distinction becomes visible only for untruncated $\infty$-presheaves. \hypertarget{for_presheaf_categories}{}\subsubsection*{{For $(\infty,1)$-presheaf $(\infty,1)$-categories}}\label{for_presheaf_categories} Let throughout $C$ be a [[small (∞,1)-category]] and write $PSh_{(\infty,1)}(C)$ for the [[(∞,1)-category of (∞,1)-presheaves]] on $C$. \begin{uprop} \textbf{sheaves form a topological localization} If $C$ is endowed with a [[(∞,1)-site|Grothendieck topology]], the inclusion \begin{displaymath} Sh_{(\infty,1)}(C) \hookrightarrow PSh_{(\infty,1)}(C) \end{displaymath} is a topological localization. \end{uprop} This is [[Higher Topos Theory|HTT, Prop. 6.2.2.7]]. \begin{proof} See . \end{proof} \begin{uprop} All topological localizations of $PSh_{(\infty,1)}(C)$ arise this way: There is a bijection between [[(∞,1)-site|Grothendieck topologies]] on $C$ and equivalence classes of topological localizations of $PSh_{(\infty,1)}(C)$. \end{uprop} This is [[Higher Topos Theory|HTT, prop. 6.2.2.17]]. \begin{proof} \ldots{} \end{proof} \hypertarget{model_category_presentation}{}\subsubsection*{{Model category presentation}}\label{model_category_presentation} See at \emph{[[?ech model structure on simplicial sheaves]]}. \hypertarget{references}{}\subsection*{{References}}\label{references} Topological localizations are the topic of section 6.2, from def. 6.2.1.5 on, in \begin{itemize}% \item [[Jacob Lurie]], \emph{[[Higher Topos Theory]]} . \end{itemize} [[!redirects topological localizations]] \end{document}