\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{topologically twisted D=4 super Yang-Mills theory} \hypertarget{context}{}\subsubsection*{{Context}}\label{context} \hypertarget{physics}{}\paragraph*{{Physics}}\label{physics} [[!include physicscontents]] \hypertarget{quantum_field_theory}{}\paragraph*{{Quantum field theory}}\label{quantum_field_theory} [[!include functorial quantum field theory - contents]] \hypertarget{chernweil_theory}{}\paragraph*{{$\infty$-Chern-Weil theory}}\label{chernweil_theory} [[!include infinity-Chern-Weil theory - contents]] \hypertarget{contents}{}\section*{{Contents}}\label{contents} \noindent\hyperlink{idea}{Idea}\dotfill \pageref*{idea} \linebreak \noindent\hyperlink{for__supersymmetry}{For $N = 4$ supersymmetry}\dotfill \pageref*{for__supersymmetry} \linebreak \noindent\hyperlink{for__supersymmetry_2}{For $N = 2$ supersymmetry}\dotfill \pageref*{for__supersymmetry_2} \linebreak \noindent\hyperlink{table_of_relations_via_holographic_compactifications_and_twists}{Table of relations via holographic, compactifications and twists}\dotfill \pageref*{table_of_relations_via_holographic_compactifications_and_twists} \linebreak \noindent\hyperlink{Formalization}{Formalization}\dotfill \pageref*{Formalization} \linebreak \noindent\hyperlink{related_concepts}{Related concepts}\dotfill \pageref*{related_concepts} \linebreak \noindent\hyperlink{References}{References}\dotfill \pageref*{References} \linebreak \hypertarget{idea}{}\subsection*{{Idea}}\label{idea} A deformation of [[super Yang-Mills theory]] that yields a [[topological field theory]] in 4 [[dimensions]]. This is in higher dimensional analogy to how the [[topological string]]-[[topological twist|twisting]] of the [[superstring]] yields the topological [[A-model]] and [[B-model]] 2d topological field theories. \hypertarget{for__supersymmetry}{}\subsubsection*{{For $N = 4$ supersymmetry}}\label{for__supersymmetry} Given [[N=4 D=4 super Yang-Mills theory]], the twisting is induced by a choice of [[subgroup]] inclusion of the [[special orthogonal group]] $SO(4)$ into the [[R-symmetry]] group $SO(6)$. Then choose a [[supersymmetry]] $Q$ which is invariant under the resulting combined action of $SO(4)$ on [[spacetime]] and via [[R-symmetry]] and consider the subspace of [[quantum states]]/[[quantum observables]] which are in the [[kernel]] of $Q$. This subspace defines a [[topological field theory]] which is called the corresponding twisted topological super Yang-Mills theory. Before the twisting super [[Yang-Mills theory]] depends on the complex [[coupling constant]] \begin{displaymath} \tau = \frac{\theta}{2\pi} + \frac{4 \pi i }{g_{YM}^2} \end{displaymath} (with $\theta$ the \emph{[[theta angle]]}), after the twisting there is an additional complex parameter $t$ encoding the choice of topological supercharge. The twisted theory however only depends on the combination \begin{displaymath} \Psi \coloneqq \frac{\theta}{2 \pi} + \frac{4 \pi i}{g_{YM}^2} \frac{t - t^{-1}}{t + t^{-1}} \,. \end{displaymath} (\hyperlink{Witten11}{Witten 11, p. 29}) The resulting [[4d TQFT]] is also called the \emph{[[Kapustin-Witten TQFT]]}. \hypertarget{for__supersymmetry_2}{}\subsubsection*{{For $N = 2$ supersymmetry}}\label{for__supersymmetry_2} For [[N=2 D=4 super Yang-Mills theory]] the twisting follows the same idea, but is a little but more intricate (\hyperlink{Witten11}{Witten 11, section 5.1.1}) \hypertarget{table_of_relations_via_holographic_compactifications_and_twists}{}\subsubsection*{{Table of relations via holographic, compactifications and twists}}\label{table_of_relations_via_holographic_compactifications_and_twists} [[!include gauge theory from AdS-CFT -- table]] \hypertarget{Formalization}{}\subsection*{{Formalization}}\label{Formalization} A formalization of the topological twisting in the framework of [[perturbation theory|perturbative]] [[BV-quantization]] of field theory via [[factorization algebras]] of local [[quantum observables]] is proposed in (\hyperlink{Costello11}{Costello 11, section 15, 16, \ldots{}}). The definition there essentially amounts to saying that a choice of topological twisting is a choice of [[action]] of the [[semidirect product]] [[supergroup]] \begin{displaymath} \mathbb{G}_m \ltimes \Pi \mathbb{G}_{ad} \end{displaymath} of the [[multiplicative group]] acting on the odd-shifted [[additive group]] via the given [[super Poincare Lie algebra]]. We notice that this group is the \href{odd%20line#TheAutomorphismSuperGroup}{automorphism group of the odd line} \begin{displaymath} \mathbf{Aut}(\mathbb{R}^{0|1}) \simeq \mathbb{G}_m \ltimes \Pi \mathbb{G}_{ad} \end{displaymath} for which it is well known that an [[action]] of it is equivalent to a choice of [[differential]] $Q$ and corresponding grading. This chosen differential $Q$ among the supersymmetry generators in the [[super Poincare Lie algebra]] is the choice of what in the physics literature is called the twisting ``BRST operator''. The twisted theory itself is then defined to be given by the [[factorization algebra]] of observables which is essentially the [[homotopy fixed points]] of this $\mathbf{Aut}(\mathbb{R}^{0|1})$-[[infinity-action]]. \hypertarget{related_concepts}{}\subsection*{{Related concepts}}\label{related_concepts} \begin{itemize}% \item [[topological Yang-Mills theory]] \item [[topological twist]] \item [[N=1 D=4 super Yang-Mills theory]] \item [[N=2 D=4 super Yang-Mills theory]] \item [[N=4 D=3 super Yang-Mills theory]] \item [[N=4 D=4 super Yang-Mills theory]] \item [[D=5 super Yang-Mills theory]] \item [[S-duality]], [[geometric Langlands duality]] \item [[chiral ring]], [[quantum cohomology]] \end{itemize} \hypertarget{References}{}\subsection*{{References}}\label{References} The idea of topological twisting of [[supersymmetry|supersymmetric]] quantum field theory goes back to \begin{itemize}% \item [[Edward Witten]], \emph{Topological quantum field theory}, Comm. Math. Phys. Volume 117, Number 3 (1988), 353-386 (\href{http://projecteuclid.org/euclid.cmp/1104161738}{Euclid}) \end{itemize} often referred to as ``[[cohomological field theory]]'' \begin{itemize}% \item [[Edward Witten]], \emph{Introduction to cohomological field theory}, InternationalJournal of Modern Physics A, Vol. 6,No 6 (1991) 2775-2792 ([[WittenCQFT.pdf:file]]) \end{itemize} where it is [[N=2 D=4 super Yang-Mills theory]] that is twisted and related to [[Donaldson theory]]. The analogous twisting of [[N=4 D=4 super Yang-Mills theory]] is due to \begin{itemize}% \item [[Cumrun Vafa]], [[Edward Witten]], \emph{A Strong Coupling Test of S-Duality}, Nucl. Phys. B431:3-77,1994 (\href{http://arxiv.org/abs/hep-th/9408074}{arXiv:hep-th/9408074}) \end{itemize} The $N=4$-case and one of the possible $N=2$-twists yield [[instanton]] invariants captured by the [[Seiberg-Witten theory]] generalization of [[Donaldson theory]]. Another variant of the $N=2$ twist was described in \begin{itemize}% \item Neil Marcus, \emph{The other topological twisting of N=4 Yang-Mills}, Nucl.Phys. B452 (1995) 331-345 (\href{http://arxiv.org/abs/hep-th/9506002}{arXiv:hep-th/9506002}) \end{itemize} and yields a geometric interpretation of the [[geometric Langlands correspondence]], as found in \begin{itemize}% \item [[Anton Kapustin]], [[Edward Witten]], \emph{Electric-Magnetic Duality And The Geometric Langlands Program} (\href{http://arxiv.org/abs/hep-th/0604151}{arXiv:hep-th/0604151}) \end{itemize} A detailed analysis of the three twists of the $N=4$ theory is in \begin{itemize}% \item Carlos Lozano, \emph{Duality in Topological Quantum Field Theories}, PhD thesis (\href{http://arxiv.org/abs/hep-th/9907123}{arXiv:hep-th/9907123}) \end{itemize} Discussion of generalization of the twisting to [[quantum field theory on curved spacetime]] is in \begin{itemize}% \item Jeong-Hyuck Park, Dimitrios Tsimpis, \emph{Topological twisting of conformal supercharges}, Nucl. Phys. B776:405-430,2007 (\href{http://arxiv.org/abs/hep-th/0610159}{arXiv:hep-th/0610159}) \end{itemize} Section 2.2.1 of \begin{itemize}% \item [[Edward Witten]], \emph{Fivebranes and knots} (\href{http://arxiv.org/abs/1101.3216}{arXiv:1101.3216}) \end{itemize} briefly recalls the topological twisting of [[N=4 D=4 super Yang-Mills theory]]. Section 5.1.1 there discusses the twisting of [[N=2 D=4 super Yang-Mills theory]] (induced from the [[6d (2,0)-superconformal QFT]] on the [[M5-brane]]), which was introduced in section 3.1.2 of \begin{itemize}% \item [[Davide Gaiotto]], [[Gregory Moore]] and [[Andrew Neitzke]], \emph{Wall-crossing, Hitchin Systems, and the WKB Approximation}, (\href{http://arxiv.org/abs/0907.3987}{arXiv:0907.3987}) \end{itemize} For more on this see the references listed at \emph{\href{N%3D2+D%3D4+super+Yang-Mills+theory#ReferencesConstructionFrom5Branes}{N=2 D=4 super Yang-Mills theory -- References -- Construction from 5-branes}}. More mathematically formalized discussion of topologically twisted supersymmetric theories in the framework of [[BV-BRST formalism]] [[perturbation theory]] (and with an eye towards the [[factorization algebra]] formulation) is in \begin{itemize}% \item [[Kevin Costello]], from section 15 on in \emph{Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4} (\href{http://arxiv.org/abs/1111.4234}{arXiv:1111.4234}) \end{itemize} More in \begin{itemize}% \item [[Chris Elliott]], [[Pavel Safronov]], \emph{Topological twists of supersymmetric observables} (\href{https://arxiv.org/abs/1805.10806}{arXiv:1805.10806}) \end{itemize} In \begin{itemize}% \item [[Kevin Costello]], \emph{Supersymmetric gauge theory and the Yangian} (\href{http://arxiv.org/abs/1303.2632}{arXiv:1303.2632}) \end{itemize} is discussed that the holomorphically twisted $N=1$ theory is controled by the [[Yangian]] in analogy to how [[Chern-Simons theory]] is controled by a [[quantum group]]. [[!redirects topologically twisted D=4 super Yang-Mills theories]] [[!redirects topologically twisted super Yang-Mills theory]] [[!redirects topologically twisted super Yang-Mills theories]] [[!redirects topologically twisted N=2 D=4 super Yang-Mills theory]] [[!redirects topologically twisted N=2 D=4 super Yang-Mills theories]] [[!redirects topologically twisted N=4 D=4 super Yang-Mills theory]] [[!redirects topologically twisted N=4 D=4 super Yang-Mills theories]] \end{document}