\documentclass[12pt,titlepage]{article} \usepackage{amsmath} \usepackage{mathrsfs} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsthm} \usepackage{mathtools} \usepackage{graphicx} \usepackage{color} \usepackage{ucs} \usepackage[utf8x]{inputenc} \usepackage{xparse} \usepackage{hyperref} %----Macros---------- % % Unresolved issues: % % \righttoleftarrow % \lefttorightarrow % % \color{} with HTML colorspec % \bgcolor % \array with options (without options, it's equivalent to the matrix environment) % Of the standard HTML named colors, white, black, red, green, blue and yellow % are predefined in the color package. Here are the rest. \definecolor{aqua}{rgb}{0, 1.0, 1.0} \definecolor{fuschia}{rgb}{1.0, 0, 1.0} \definecolor{gray}{rgb}{0.502, 0.502, 0.502} \definecolor{lime}{rgb}{0, 1.0, 0} \definecolor{maroon}{rgb}{0.502, 0, 0} \definecolor{navy}{rgb}{0, 0, 0.502} \definecolor{olive}{rgb}{0.502, 0.502, 0} \definecolor{purple}{rgb}{0.502, 0, 0.502} \definecolor{silver}{rgb}{0.753, 0.753, 0.753} \definecolor{teal}{rgb}{0, 0.502, 0.502} % Because of conflicts, \space and \mathop are converted to % \itexspace and \operatorname during preprocessing. % itex: \space{ht}{dp}{wd} % % Height and baseline depth measurements are in units of tenths of an ex while % the width is measured in tenths of an em. \makeatletter \newdimen\itex@wd% \newdimen\itex@dp% \newdimen\itex@thd% \def\itexspace#1#2#3{\itex@wd=#3em% \itex@wd=0.1\itex@wd% \itex@dp=#2ex% \itex@dp=0.1\itex@dp% \itex@thd=#1ex% \itex@thd=0.1\itex@thd% \advance\itex@thd\the\itex@dp% \makebox[\the\itex@wd]{\rule[-\the\itex@dp]{0cm}{\the\itex@thd}}} \makeatother % \tensor and \multiscript \makeatletter \newif\if@sup \newtoks\@sups \def\append@sup#1{\edef\act{\noexpand\@sups={\the\@sups #1}}\act}% \def\reset@sup{\@supfalse\@sups={}}% \def\mk@scripts#1#2{\if #2/ \if@sup ^{\the\@sups}\fi \else% \ifx #1_ \if@sup ^{\the\@sups}\reset@sup \fi {}_{#2}% \else \append@sup#2 \@suptrue \fi% \expandafter\mk@scripts\fi} \def\tensor#1#2{\reset@sup#1\mk@scripts#2_/} \def\multiscripts#1#2#3{\reset@sup{}\mk@scripts#1_/#2% \reset@sup\mk@scripts#3_/} \makeatother % \slash \makeatletter \newbox\slashbox \setbox\slashbox=\hbox{$/$} \def\itex@pslash#1{\setbox\@tempboxa=\hbox{$#1$} \@tempdima=0.5\wd\slashbox \advance\@tempdima 0.5\wd\@tempboxa \copy\slashbox \kern-\@tempdima \box\@tempboxa} \def\slash{\protect\itex@pslash} \makeatother % math-mode versions of \rlap, etc % from Alexander Perlis, "A complement to \smash, \llap, and lap" % http://math.arizona.edu/~aprl/publications/mathclap/ \def\clap#1{\hbox to 0pt{\hss#1\hss}} \def\mathllap{\mathpalette\mathllapinternal} \def\mathrlap{\mathpalette\mathrlapinternal} \def\mathclap{\mathpalette\mathclapinternal} \def\mathllapinternal#1#2{\llap{$\mathsurround=0pt#1{#2}$}} \def\mathrlapinternal#1#2{\rlap{$\mathsurround=0pt#1{#2}$}} \def\mathclapinternal#1#2{\clap{$\mathsurround=0pt#1{#2}$}} % Renames \sqrt as \oldsqrt and redefine root to result in \sqrt[#1]{#2} \let\oldroot\root \def\root#1#2{\oldroot #1 \of{#2}} \renewcommand{\sqrt}[2][]{\oldroot #1 \of{#2}} % Manually declare the txfonts symbolsC font \DeclareSymbolFont{symbolsC}{U}{txsyc}{m}{n} \SetSymbolFont{symbolsC}{bold}{U}{txsyc}{bx}{n} \DeclareFontSubstitution{U}{txsyc}{m}{n} % Manually declare the stmaryrd font \DeclareSymbolFont{stmry}{U}{stmry}{m}{n} \SetSymbolFont{stmry}{bold}{U}{stmry}{b}{n} % Manually declare the MnSymbolE font \DeclareFontFamily{OMX}{MnSymbolE}{} \DeclareSymbolFont{mnomx}{OMX}{MnSymbolE}{m}{n} \SetSymbolFont{mnomx}{bold}{OMX}{MnSymbolE}{b}{n} \DeclareFontShape{OMX}{MnSymbolE}{m}{n}{ <-6> MnSymbolE5 <6-7> MnSymbolE6 <7-8> MnSymbolE7 <8-9> MnSymbolE8 <9-10> MnSymbolE9 <10-12> MnSymbolE10 <12-> MnSymbolE12}{} % Declare specific arrows from txfonts without loading the full package \makeatletter \def\re@DeclareMathSymbol#1#2#3#4{% \let#1=\undefined \DeclareMathSymbol{#1}{#2}{#3}{#4}} \re@DeclareMathSymbol{\neArrow}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\neArr}{\mathrel}{symbolsC}{116} \re@DeclareMathSymbol{\seArrow}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\seArr}{\mathrel}{symbolsC}{117} \re@DeclareMathSymbol{\nwArrow}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\nwArr}{\mathrel}{symbolsC}{118} \re@DeclareMathSymbol{\swArrow}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\swArr}{\mathrel}{symbolsC}{119} \re@DeclareMathSymbol{\nequiv}{\mathrel}{symbolsC}{46} \re@DeclareMathSymbol{\Perp}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\Vbar}{\mathrel}{symbolsC}{121} \re@DeclareMathSymbol{\sslash}{\mathrel}{stmry}{12} \re@DeclareMathSymbol{\bigsqcap}{\mathop}{stmry}{"64} \re@DeclareMathSymbol{\biginterleave}{\mathop}{stmry}{"6} \re@DeclareMathSymbol{\invamp}{\mathrel}{symbolsC}{77} \re@DeclareMathSymbol{\parr}{\mathrel}{symbolsC}{77} \makeatother % \llangle, \rrangle, \lmoustache and \rmoustache from MnSymbolE \makeatletter \def\Decl@Mn@Delim#1#2#3#4{% \if\relax\noexpand#1% \let#1\undefined \fi \DeclareMathDelimiter{#1}{#2}{#3}{#4}{#3}{#4}} \def\Decl@Mn@Open#1#2#3{\Decl@Mn@Delim{#1}{\mathopen}{#2}{#3}} \def\Decl@Mn@Close#1#2#3{\Decl@Mn@Delim{#1}{\mathclose}{#2}{#3}} \Decl@Mn@Open{\llangle}{mnomx}{'164} \Decl@Mn@Close{\rrangle}{mnomx}{'171} \Decl@Mn@Open{\lmoustache}{mnomx}{'245} \Decl@Mn@Close{\rmoustache}{mnomx}{'244} \makeatother % Widecheck \makeatletter \DeclareRobustCommand\widecheck[1]{{\mathpalette\@widecheck{#1}}} \def\@widecheck#1#2{% \setbox\z@\hbox{\m@th$#1#2$}% \setbox\tw@\hbox{\m@th$#1% \widehat{% \vrule\@width\z@\@height\ht\z@ \vrule\@height\z@\@width\wd\z@}$}% \dp\tw@-\ht\z@ \@tempdima\ht\z@ \advance\@tempdima2\ht\tw@ \divide\@tempdima\thr@@ \setbox\tw@\hbox{% \raise\@tempdima\hbox{\scalebox{1}[-1]{\lower\@tempdima\box \tw@}}}% {\ooalign{\box\tw@ \cr \box\z@}}} \makeatother % \mathraisebox{voffset}[height][depth]{something} \makeatletter \NewDocumentCommand\mathraisebox{moom}{% \IfNoValueTF{#2}{\def\@temp##1##2{\raisebox{#1}{$\m@th##1##2$}}}{% \IfNoValueTF{#3}{\def\@temp##1##2{\raisebox{#1}[#2]{$\m@th##1##2$}}% }{\def\@temp##1##2{\raisebox{#1}[#2][#3]{$\m@th##1##2$}}}}% \mathpalette\@temp{#4}} \makeatletter % udots (taken from yhmath) \makeatletter \def\udots{\mathinner{\mkern2mu\raise\p@\hbox{.} \mkern2mu\raise4\p@\hbox{.}\mkern1mu \raise7\p@\vbox{\kern7\p@\hbox{.}}\mkern1mu}} \makeatother %% Fix array \newcommand{\itexarray}[1]{\begin{matrix}#1\end{matrix}} %% \itexnum is a noop \newcommand{\itexnum}[1]{#1} %% Renaming existing commands \newcommand{\underoverset}[3]{\underset{#1}{\overset{#2}{#3}}} \newcommand{\widevec}{\overrightarrow} \newcommand{\darr}{\downarrow} \newcommand{\nearr}{\nearrow} \newcommand{\nwarr}{\nwarrow} \newcommand{\searr}{\searrow} \newcommand{\swarr}{\swarrow} \newcommand{\curvearrowbotright}{\curvearrowright} \newcommand{\uparr}{\uparrow} \newcommand{\downuparrow}{\updownarrow} \newcommand{\duparr}{\updownarrow} \newcommand{\updarr}{\updownarrow} \newcommand{\gt}{>} \newcommand{\lt}{<} \newcommand{\map}{\mapsto} \newcommand{\embedsin}{\hookrightarrow} \newcommand{\Alpha}{A} \newcommand{\Beta}{B} \newcommand{\Zeta}{Z} \newcommand{\Eta}{H} \newcommand{\Iota}{I} \newcommand{\Kappa}{K} \newcommand{\Mu}{M} \newcommand{\Nu}{N} \newcommand{\Rho}{P} \newcommand{\Tau}{T} \newcommand{\Upsi}{\Upsilon} \newcommand{\omicron}{o} \newcommand{\lang}{\langle} \newcommand{\rang}{\rangle} \newcommand{\Union}{\bigcup} \newcommand{\Intersection}{\bigcap} \newcommand{\Oplus}{\bigoplus} \newcommand{\Otimes}{\bigotimes} \newcommand{\Wedge}{\bigwedge} \newcommand{\Vee}{\bigvee} \newcommand{\coproduct}{\coprod} \newcommand{\product}{\prod} \newcommand{\closure}{\overline} \newcommand{\integral}{\int} \newcommand{\doubleintegral}{\iint} \newcommand{\tripleintegral}{\iiint} \newcommand{\quadrupleintegral}{\iiiint} \newcommand{\conint}{\oint} \newcommand{\contourintegral}{\oint} \newcommand{\infinity}{\infty} \newcommand{\bottom}{\bot} \newcommand{\minusb}{\boxminus} \newcommand{\plusb}{\boxplus} \newcommand{\timesb}{\boxtimes} \newcommand{\intersection}{\cap} \newcommand{\union}{\cup} \newcommand{\Del}{\nabla} \newcommand{\odash}{\circleddash} \newcommand{\negspace}{\!} \newcommand{\widebar}{\overline} \newcommand{\textsize}{\normalsize} \renewcommand{\scriptsize}{\scriptstyle} \newcommand{\scriptscriptsize}{\scriptscriptstyle} \newcommand{\mathfr}{\mathfrak} \newcommand{\statusline}[2]{#2} \newcommand{\tooltip}[2]{#2} \newcommand{\toggle}[2]{#2} % Theorem Environments \theoremstyle{plain} \newtheorem{theorem}{Theorem} \newtheorem{lemma}{Lemma} \newtheorem{prop}{Proposition} \newtheorem{cor}{Corollary} \newtheorem*{utheorem}{Theorem} \newtheorem*{ulemma}{Lemma} \newtheorem*{uprop}{Proposition} \newtheorem*{ucor}{Corollary} \theoremstyle{definition} \newtheorem{defn}{Definition} \newtheorem{example}{Example} \newtheorem*{udefn}{Definition} \newtheorem*{uexample}{Example} \theoremstyle{remark} \newtheorem{remark}{Remark} \newtheorem{note}{Note} \newtheorem*{uremark}{Remark} \newtheorem*{unote}{Note} %------------------------------------------------------------------- \begin{document} %------------------------------------------------------------------- \section*{toposes are extensive} \hypertarget{toposes_are_extensive}{}\section*{{Toposes are extensive}}\label{toposes_are_extensive} \noindent\hyperlink{statement}{Statement}\dotfill \pageref*{statement} \linebreak \noindent\hyperlink{proofs}{Proofs}\dotfill \pageref*{proofs} \linebreak \noindent\hyperlink{from_finitary_to_infinitary}{From finitary to infinitary}\dotfill \pageref*{from_finitary_to_infinitary} \linebreak \noindent\hyperlink{via_pushouts_of_monos}{Via pushouts of monos}\dotfill \pageref*{via_pushouts_of_monos} \linebreak \noindent\hyperlink{via_quasidisjointness}{Via quasi-disjointness}\dotfill \pageref*{via_quasidisjointness} \linebreak \noindent\hyperlink{via_logical_functors}{Via logical functors}\dotfill \pageref*{via_logical_functors} \linebreak \noindent\hyperlink{references}{References}\dotfill \pageref*{references} \linebreak \hypertarget{statement}{}\subsection*{{Statement}}\label{statement} Every [[elementary topos]] is a finitary [[extensive category]]. In fact, more is true: if an elementary topos has [[coproducts]] indexed by any [[arity class]] $\kappa$, then it is $\kappa$-extensive. In particular, a cocomplete elementary topos is infinitary extensive. \hypertarget{proofs}{}\subsection*{{Proofs}}\label{proofs} There are several possible proofs. In all cases, stability of coproducts under pullback is automatic since a topos is locally cartesian closed, so it suffices to consider [[disjoint coproduct|disjointness]]. \hypertarget{from_finitary_to_infinitary}{}\subsubsection*{{From finitary to infinitary}}\label{from_finitary_to_infinitary} As shown at [[extensive category]], if we assume [[classical logic]] then $\coprod_{j\in J} A_j \cong A_1 \sqcup A_2 \sqcup \coprod_{j\neq 1,2} A_j$, so that in a finitary-extensive category, any existing coproducts are stable and disjoint. Thus, in this case it suffices to deal with finite coproducts. However, in topos theory we are often interested in toposes ``over an arbitrary base'', in which case the ambient logic is [[constructive logic]] and so this argument does not apply. Nevertheless, we mention a couple of proofs that apparently apply only to the finitary case in addition to the fully general version. \hypertarget{via_pushouts_of_monos}{}\subsubsection*{{Via pushouts of monos}}\label{via_pushouts_of_monos} A proof applying to finite coproducts is given in \hyperlink{Johnstone}{Johnstone, A2.4.4}: since $0\to X$ and $0\to Y$ are monic, it suffices to show that the pushout of a mono is a mono and also a pullback. To see this, let $f:A\rightarrowtail B$ be monic and $g:A\to C$ any morphism, and let $h:B\to P C$ be the name of $(f,g):A\to B\times C$, i.e. $(f,g)$ is the pullback $\in_C \rightarrowtail P C \times C$ along $(h,1)$. In other words, $(k,l):X\to B\times C$ factors through $(f,g)$ iff $(h k,l)$ factors through $\in_C$ (i.e. $l(x) \in h k(x)$ for all $x:X$ in the [[internal logic]]). This is in particular the case if $h k = \{\} \circ l$ (i.e. $h k(x) = \{l(x)\}$ for all $x:X$ in the internal logic), which implies that the square \begin{displaymath} \itexarray{A & \xrightarrow{g} & C \\ ^f\downarrow && \downarrow^{\{\}} \\ B & \xrightarrow{h} & P C } \end{displaymath} is a pullback. Now given a pushout \begin{displaymath} \itexarray{A & \xrightarrow{g} & C \\ ^f\downarrow && \downarrow^{d} \\ B & \xrightarrow{c} & D } \end{displaymath} with $f$ monic, with $h$ as above we have an induced $m:D \to P C$ by the universal property of the pushout, with $m d = \{\}$ and $m c = h$. Since $\{\}$ is monic, $d$ must also be monic, and since the previous square is a pullback, so must this one be. \hypertarget{via_quasidisjointness}{}\subsubsection*{{Via quasi-disjointness}}\label{via_quasidisjointness} A different proof applying to finite coproducts can be obtained by combining A1.5.14 and A1.6.2 of \hyperlink{Johnstone}{Johnstone}. Define $R$ and $S$ to make the following squares pullbacks: \begin{displaymath} \itexarray{ R & \xrightarrow{r} & A & \xleftarrow{s} & S\\ ^{r'}\downarrow && \downarrow^i && \downarrow\\ A & \xrightarrow{i} & A+B & \xleftarrow{j} & B} \end{displaymath} Specifically, $(r,r')$ is the [[kernel pair]] of $i$. In particular, there is an induced diagonal $\triangle : A \to R$ such that $r \triangle = 1_A$. On the other hand, since pullback preserves colimits, $(r,s)$ is a coproduct diagram. Thus, the pair of morphisms $1_R:R\to R$ and $\triangle \circ s : S\to R$ factor (uniquely) through some $h:A\to R$, so that in particular $h r = 1_R$. Thus, $r:R\to A$ has both a left and a right inverse, so it is an isomorphism, and hence $i$ is monic. Dually, $j$ is monic. Now we claim that any two morphisms $f,g:S\to X$ with domain $S$ are equal. For the pair of morphisms $R \xrightarrow{r} A \to A+X$ and $S \xrightarrow{f} X \to A+X$ factor uniquely through $A$ (which, recall, is the coproduct $R+S$). But since $r$ is an isomorphism, this factorization must be the left coprojection $A\to A+X$. Therefore, the composite $S \xrightarrow{f} X \to A+X$ is equal to the composite $S \xrightarrow{s} A \to A+X$, and similarly so is the composite $S \xrightarrow{g} X \to A+X$. Since $X\to A+X$ is monic by the previous paragraph, $f= g$. Finally, since $0$ is a strict initial object, $0\to S$ is monic. And of course $1_S : S\to S$ is also monic, and these two monomorphisms are classified by two maps $f,g:S\to \Omega$ into the subobject classifier. By the previous paragraph, $f= g$, hence $S\cong 0$ and is initial. \hypertarget{via_logical_functors}{}\subsubsection*{{Via logical functors}}\label{via_logical_functors} Finally, we give a proof that applies constructively to arbitrary coproducts. This proof is due to Jibladze and can be found (in fibered-topos language) in \hyperlink{Streicher}{Streicher, Appendix A}. (Moens himself always just assumed that internal sums are stable and disjoint whereas Jibladze proved that for every fibered topos with internal sums these are actually stable and disjoint.) Suppose $\mathcal{E}$ a topos with $J$-indexed coproducts for all $J$ belonging to some [[arity class]] $\kappa$. Then $\Delta : \mathcal{E} \to \mathcal{E}^J$ is a [[logical functor]] with a left adjoint $\coprod_J$, so (by A2.3.8 of \hyperlink{Johnstone}{Johnstone}, see also [[logical functor]]) to show that $\coprod_J$ induces equivalences $\mathcal{E}^J/\{A_j\} \to \mathcal{E}/\coprod_j A_j$ (which is one characterization of $\kappa$-extensivity) it suffices for $\coprod_J$ to be faithful. As with any adjunction, to show the left adjoint to be faithful it suffices to show that the unit $\eta : Id \to \Delta \coprod_J$ is monic, which means in this case that the injections $A_j \to \coprod_j A_j$ are all monic. Now since $\kappa$ is an arity class, $J\times J$ also belongs to it, and hence so do the fibers of the diagonal $J\to J\times J$. Thus, $\mathcal{E}$ has coproducts indexed by the [[subsingletons]] determined by the equalities $(j=k)$ for any $j,k\in J$. Moreover, for any $j$ we can write $A_j = \coprod_{k\in J} \coprod_{(j=k)} A_{k}$, and under this identification the injection $A_j \to \coprod_{k\in J} A_{k}$ is obtained by applying the functor $\coprod_J$ to the evident family of maps $\coprod_{(j=k)} A_{k}\to A_k$. But since $\coprod_J$ is the left adjoint of a logical functor, it preserves monomorphisms (see A2.4.8 of \hyperlink{Johnstone}{Johnstone}, also [[logical functor]]). Thus, it suffices to prove that each $\coprod_{(j=k)} A_{k}\to A_k$ is monic. Now, the functor $\coprod_{(j=k)} : \mathcal{E}^{(j=k)} \to \mathcal{E}$ has a logical right adjoint sending $B\in\mathcal{E}$ to the subsingleton-indexed family $\{B\}_{(j=k)}$, and the units of its adjunction $\{A\}_{(j=k)} \to \{ \coprod_{(j=k)} A \}_{(j=k)}$ are isomorphisms (to define an inverse, it suffices to consider the object $\coprod_{(j=k)} A$ under the assumption $j=k$, in which case this object is isomorphic to $A$). Thus, $\coprod_{(j=k)}$ is fully faithful, and in particular faithful, and since its right adjoint is also logical, it induces an equivalence $\mathcal{E}^{(j=k)} \simeq \mathcal{E}/\coprod_{(j=k)} 1$. However, the unit of a pullback adjunction $\mathcal{E}/I \rightleftarrows \mathcal{E}$ is $A\to A\times I$, and if this is an isomorphism then in particular $I\cong I\times I$ and thus $I$ is subterminal. Moreover, in this case the counits of the adjunction are the projections $A\times I \to A$, which are pullbacks of the mono $I\to 1$ and therefore also monic. Finally, in our case where $I = \coprod_{(j=k)} 1$, the counit associated to $A_k$ is precisely the map $\coprod_{(j=k)} A_{k} \to A_k$ that we wanted to prove to be monic. \hypertarget{references}{}\subsection*{{References}}\label{references} \begin{itemize}% \item [[Peter Johnstone]], [[Sketches of an Elephant]] \item [[Thomas Streicher]], \emph{Fibered categories a la Jean Benabou}, \href{http://citeseerx.ist.psu.edu/viewdoc/citations;jsessionid=76DB3E2F57E81C74E05109B8F7E11E44?doi=10.1.1.678.919}{citeseer} \end{itemize} \end{document}